日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設f(x)=
          x-3               x≥10
          f(f(x+5))     x<10
          ,則f(6)的值為( 。
          分析:由題意可得f(6)=f(f(11))=f(8)=f(f(13))=f(10)=10-3.
          解答:解:∵f(x)=
          x-3               x≥10
          f(f(x+5))     x<10
          ,則f(6)=f(f(11))=f(11-3)=f(8)=f(f(13))=f(13-3)=f(10)=10-3=7,
          故選 B.
          點評:本題主要考查根據(jù)分段函數(shù)的解析式求函數(shù)的值,體現(xiàn)了轉化的數(shù)學思想,屬于基礎題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          對于定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被函數(shù)g(x)替代.
          (1)若f(x)=
          x
          2
          -
          1
          x
          ,g(x)=lnx
          ,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
          (2)記f(x)=x,g(x)=lnx,證明f(x)在(
          1
          m
          ,m)(m>1)
          上不能被g(x)替代;
          (3)設f(x)=alnx-ax,g(x)=-
          1
          2
          x2+x
          ,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實數(shù)a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設函數(shù)f(x)的定義域為R+,且f(1)=3.
          (1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
          (2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
          (3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
          ①f(2-n)與2-n+2(n∈N*);
          ②f(x)與2x+2(x∈(0,1]).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設f(x)=-x3+bx2+cx,其導函數(shù)y=f'(x)的圖象經(jīng)過點(-2,0),(
          23
           , 0)

          (Ⅰ)求f(x)的極小值;
          (Ⅱ)方程f(x)+p=0有唯一實數(shù)解,求p的取值范圍;
          (Ⅲ)若對x∈[-3,3],都有f(x)≥m2-14m恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:徐州模擬 題型:解答題

          設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案