日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}滿足an=2an-1+2n-1(n∈N*,n≥2),且a4=81
          (1)求數(shù)列的前三項(xiàng)a1、a2、a3的值;
          (2)是否存在一個(gè)實(shí)數(shù)λ,使得數(shù)列{
          an2n
          }
          為等差數(shù)列?若存在,求出λ的值;若不存在,說明理由;求數(shù)列an通項(xiàng)公式.
          分析:(1)直接把n=3,2,1代入an=2an-1+2n-1(n∈N*,n≥2),再借助于a4=81,即可求出數(shù)列的前三項(xiàng);
          (2)先假設(shè)存在一個(gè)實(shí)數(shù)λ符合題意,得到
          an
          2n
          -
          an-1
          2n-1
          必為與n無關(guān)的常數(shù),整理
          an
          2n
          -
          an-1
          2n-1
          即可求出實(shí)數(shù)λ,進(jìn)而求出數(shù)列{an}的通項(xiàng)公式.
          解答:解:(1)由an=2an-1+2n-1(n≥2)?a4=2a3+24-1=81?a3=33
          同理可得a2=13,a1=5(3分)
          (2)假設(shè)存在一個(gè)實(shí)數(shù)λ符合題意,則
          an
          2n
          -
          an-1
          2n-1
          必為與n無關(guān)的常數(shù)
          an
          2n
          -
          an-1
          2n-1
          =
          an-2an-1
          2n
          =
          2n-1-λ
          2n
          =1-
          1+λ
          2n
          (5分)
          要使
          an
          2n
          -
          an-1
          2n-1
          是與n無關(guān)的常數(shù),則
          1+λ
          2n
          =0
          ,得λ=-1
          故存在一個(gè)實(shí)數(shù)λ=-1,使得數(shù)列{
          an
          2n
          }
          為等差數(shù)列(8分)
          由(2)知數(shù)列{
          an
          2n
          }
          的公差d=1,∴
          an-1
          2n
          =
          a1-1
          21
          +(n-1)•1=n+1

          得an=(n+1)•2n+1(13分)
          點(diǎn)評(píng):本題主要考查數(shù)列遞推關(guān)系式的應(yīng)用以及等差關(guān)系的確定.解決第二問的關(guān)鍵在于由數(shù)列{
          an
          2n
          }
          為等差數(shù)列,得到
          an
          2n
          -
          an-1
          2n-1
          必為與n無關(guān)的常數(shù),進(jìn)而求出對(duì)應(yīng)實(shí)數(shù)λ的值.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=1且an+1=
          3+4an
          12-4an
          , n∈N*

          (1)若數(shù)列{bn}滿足:bn=
          1
          an-
          1
          2
          (n∈N*)
          ,試證明數(shù)列bn-1是等比數(shù)列;
          (2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
          (3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足
          1
          2
          a1+
          1
          22
          a2+
          1
          23
          a3+…+
          1
          2n
          an=2n+1
          則{an}的通項(xiàng)公式
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=
          3
          2
          ,且an=
          3nan-1
          2an-1+n-1
          (n≥2,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
          (1)若a1=
          54
          ,求an;
          (2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
          2n-1
          2n-1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案