日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=lnx+
          a
          x
          (a>0)

          (Ⅰ)求f(x)的單調(diào)區(qū)間;
          (Ⅱ)若以y=f(x)(x∈(0,3])圖象上任意一點P(x0,y0)為切點的切線的斜率k≤
          1
          2
          恒成立,求實數(shù)a的最小值.
          分析:(1)求出函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0,小于0,分別解出不等式即可;
          (2)切線的斜率即為函數(shù)在切點處的導(dǎo)數(shù),讓導(dǎo)數(shù)
          1
          2
          恒成立即可,再由不等式恒成立時所取的條件得到實數(shù)a范圍,即得實數(shù)a的最小值.
          解答:解:由f(x)=lnx+
          a
          x
          (a>0)
          ,得到f′(x)=
          1
          x
          -
          a
          x2
          =
          x-a
          x2
           (a>0,x>0)

          (1)令f′(x)>0,得到x-a>0,故函數(shù)f(x)的單調(diào)遞增區(qū)間為(a,+∞),
          令f′(x)<0,得到x-a<0,故函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,a),
          故函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,a),單調(diào)遞增區(qū)間為(a,+∞).
          (2)由于f′(x0)=
          x0-a
          x02
          ,且以y=f(x)(x∈(0,3])圖象上任意一點P(x0,y0)為切點的切線的斜率k≤
          1
          2
          恒成立
          f′(x0)=
          x0-a
          x02
           ≤
          1
          2
          在(0,3]上恒成立,即a≥x0-
          1
          2
          x02
          在(0,3]上恒成立,
          g(x)=x-
          1
          2
          x2(0<x≤3)
          ,可知g(x)max=g(1)=
          1
          2
          ,
          a≥
          1
          2

          故實數(shù)a的最小值為
          1
          2
          點評:本題主要考查導(dǎo)函數(shù)的正負與原函數(shù)的單調(diào)性之間的關(guān)系,即當導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減.同時考查利用導(dǎo)數(shù)求曲線上過某點切線方程的斜率,不等式恒成立時所取的條件.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          1
          3
          x3-
          3
          2
          ax2-(a-3)x+b

          (1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實數(shù)a,b的值:
          (2)當a<3時,令g(x)=
          f′(x)
          x
          ,求y=g(x)在[l,2]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          1
          2
          x2-alnx
          的圖象在點P(2,f(2))處的切線方程為l:y=x+b
          (1)求出函數(shù)y=f(x)的表達式和切線l的方程;
          (2)當x∈[
          1
          e
          ,e]
          時(其中e=2.71828…),不等式f(x)<k恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=lnx,g(x)=
          12
          x2+a
          (a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點的橫坐標為1.
          (1)求直線l的方程及a的值;
          (2)當k>0時,試討論方程f(1+x2)-g(x)=k的解的個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          13
          x3+x2+ax

          (1)討論f(x)的單調(diào)性;
          (2)設(shè)f(x)有兩個極值點x1,x2,若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=x3-
          32
          ax2+b
          ,a,b為實數(shù),x∈R,a∈R.
          (1)當1<a<2時,若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
          (2)在(1)的條件下,求經(jīng)過點P(2,1)且與曲線f(x)相切的直線l的方程;
          (3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點的個數(shù).

          查看答案和解析>>

          同步練習冊答案