日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若實(shí)數(shù)x,y滿足不等式組
          x≥1
          x-4y+3≤0
          x+2y-9≤0
          ,則函數(shù)z=x+y的最大值是
          7
          7
          分析:作出題中不等式組表示的平面區(qū)域,得如圖的△ABC及其內(nèi)部,再將目標(biāo)函數(shù)z=x+y對應(yīng)的直線進(jìn)行平移,可得當(dāng)x=5且y=2時,z=x+y取得最大值7.
          解答:解:作出不等式組
          x≥1
          x-4y+3≤0
          x+2y-9≤0
          表示的平面區(qū)域,
          得到如圖的△ABC及其內(nèi)部,
          其中A(1,1),B(1,4),C(5,2)
          設(shè)z=F(x,y)=x+y,將直線l:z=x+y進(jìn)行平移,
          當(dāng)l經(jīng)過點(diǎn)C時,目標(biāo)函數(shù)z達(dá)到最大值
          ∴z最大值=F(5,2)=7
          故答案為:7
          點(diǎn)評:本題給出二元一次不等式組,求目標(biāo)函數(shù)z=x+y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足
          f(x1)-f(x2)
          x1-x2
          <0
          ,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時,
          y
          x
          的取值范圍為
          [-
          1
          2
          ,1]
          [-
          1
          2
          ,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年山東省淄博市高考數(shù)學(xué)模擬試卷3(理科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

          定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時,的取值范圍為   

          查看答案和解析>>

          同步練習(xí)冊答案