日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系中,雙曲線Γ的中心在原點(diǎn),它的一個(gè)焦點(diǎn)坐標(biāo)為(
          5
          ,0)
          ,
          e
          1
          =(2,1)
          、
          e
          2
          =(2,-1)
          分別是兩條漸近線的方向向量.任取雙曲線Γ上的點(diǎn)P,若
          OP
          =
          ae
          1
          +
          be2
          (a、b∈R),則a、b滿足的一個(gè)等式是
           
          分析:根據(jù)
          e
          1
          =(2,1)
          、
          e
          2
          =(2,-1)
          是漸近線方向向量,進(jìn)而可知雙曲線漸近線方程根據(jù)c=
          5
          ,進(jìn)而求得a和b,求得雙曲線方程,進(jìn)而根據(jù)
          OP
          =
          ae
          1
          +
          be2
          化簡(jiǎn)整理可得答案.
          解答:解:因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
          e
          1
          =(2,1)、
          e
          2
          =(2,-1)
          是漸近線方向向量,
          所以雙曲線漸近線方程為y=±
          1
          2
          x
          ,
          c=
          5
          ,∴a=2,b=1
          雙曲線方程為
          x2
          4
          -y2=1
          ,
          OP
          =
          ae
          1
          +
          be2
          =(2a+2b,a-b),
          (2a+2b)2
          4
          -(a-b)2=1
          ,化簡(jiǎn)得4ab=1.
          故答案為4ab=1.
          點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).考查了考生分析問題和解決問題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
          π3
          )=1
          ,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
          π
          2
          ,
          2
          )
          ,且|
          AC
          |=|
          BC
          |

          (1)求角θ的值;
          (2)設(shè)α>0,0<β<
          π
          2
          ,且α+β=
          2
          3
          θ
          ,求y=2-sin2α-cos2β的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
           
          (寫出所有正確命題的編號(hào)).
          ①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
          ②如果k與b都是無(wú)理數(shù),則直線y=kx+b不經(jīng)過(guò)任何整點(diǎn)
          ③直線l經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
          ④直線y=kx+b經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
          ⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案