日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定圓C1:(x+2)2+y2=49,定圓C2:(x-2)2+y2=49,動(dòng)圓M與圓C1內(nèi)切且和圓C2外切,則動(dòng)圓圓心M的軌跡方程為
          x2
          49
          +
          y2
          45
          =1
          x2
          49
          +
          y2
          45
          =1
          分析:根據(jù)兩圓外切和內(nèi)切的判定,圓心距與兩圓半徑和差的關(guān)系,設(shè)出動(dòng)圓半徑為r,消去r,根據(jù)圓錐曲線的定義,即可求得動(dòng)圓圓心M的軌跡,進(jìn)而可求其方程.
          解答:解:設(shè)動(dòng)圓圓心M(x,y),半徑為r,
          ∵圓M與圓C1:(x+2)2+y2=49內(nèi)切,與圓C2:(x-2)2+y2=49外切,
          ∴|MC1|=7-r,|MC2|=r+7,
          ∴|MC1|+|MC2|=14>4,
          由橢圓的定義,M的軌跡為以C1,C2為焦點(diǎn)的橢圓,
          可得a=7,c=2;則
          b2=a2-c2=45;
          ∴動(dòng)圓圓心M的軌跡方程:
          x2
          49
          +
          y2
          45
          =1

          故答案為:
          x2
          49
          +
          y2
          45
          =1
          點(diǎn)評:考查兩圓的位置關(guān)系及判定方法和橢圓的定義和標(biāo)準(zhǔn)方程,要注意橢圓方程中三個(gè)參數(shù)的關(guān)系:b2=a2-c2,屬中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:湖南省師大附中2011-2012學(xué)年度高二上學(xué)期期中考試數(shù)學(xué)理科試題(人教版) 題型:022

          已知定圓C1:(x+2)2+y2=49,定圓C2:(x-2)2+y2=1,動(dòng)圓M與圓C1內(nèi)切且和圓C2外切,則動(dòng)圓圓心M的軌跡方程為________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          已知定圓C1:(x+2)2+y2=49,定圓C2:(x-2)2+y2=49,動(dòng)圓M與圓C1內(nèi)切且和圓C2外切,則動(dòng)圓圓心M的軌跡方程為________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南師大附中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

          已知定圓C1:(x+2)2+y2=49,定圓C2:(x-2)2+y2=49,動(dòng)圓M與圓C1內(nèi)切且和圓C2外切,則動(dòng)圓圓心M的軌跡方程為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南師大附中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

          已知定圓C1:(x+2)2+y2=49,定圓C2:(x-2)2+y2=49,動(dòng)圓M與圓C1內(nèi)切且和圓C2外切,則動(dòng)圓圓心M的軌跡方程為   

          查看答案和解析>>

          同步練習(xí)冊答案