日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 的左、右頂點分別是,左、右焦點分別是成等比數(shù)列,則此橢圓的離心率為 (    )

          A.            B.        C.             D.

           

          【答案】

          B

          【解析】

          試題分析:因為成等比數(shù)列,所以.因為,所以,所以,所以

          考點:本小題主要考查了等比數(shù)列的性質(zhì)和橢圓離心率的求法,考查學(xué)生綜合運用所學(xué)知識的能力.

          點評:求橢圓的離心率,關(guān)鍵是求出,而不是要把分別求出來.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•武昌區(qū)模擬)已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的中心、上頂點、右焦點構(gòu)成面積為1的等腰直角三角形.
          (1)求橢圓的方程;
          (2)若A、B分別是橢圓的左、右頂點,點M滿足MB⊥AB,連接AM,交橢圓于P點,試問:在x軸上是否存在異于點A的定點C,使得以MP為直徑的圓恒過直線BP、MC的交點,若存在,求出C點的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題16分)已知橢圓C1上的點滿足到兩焦點的距離之和為4,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點。

              (1) 求雙曲線C2的方程;

              (2) 若以橢圓的右頂點為圓心,該橢圓的焦距為半徑作一個圓,一條過點P(1,1)直線與該圓相交,交點為A、B,求弦AB最小時直線AB的方程,求求此時弦AB的長。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題16分)已知橢圓C1上的點滿足到兩焦點的距離之和為4,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點。

              (1) 求雙曲線C2的方程;

              (2) 若以橢圓的右頂點為圓心,該橢圓的焦距為半徑作一個圓,一條過點P(1,1)直線與該圓相交,交點為A、B,求弦AB最小時直線AB的方程,求求此時弦AB的長。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省“皖西七校”高三年級聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,橢圓經(jīng)過點,其左、右頂點分別是,左、右焦點分別是、(異于、)是橢圓上的動點,連接交直線、兩點,成等比數(shù)列.

          )求此橢圓的離心率;

          )求證:以線段為直徑的圓過點.

           

          查看答案和解析>>

          同步練習(xí)冊答案