日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓,
          (1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
          (2)在(1)的條件下,設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(為坐標(biāo)原點),求直線的斜率的取值范圍;
          (3)過原點任意作兩條互相垂直的直線與橢圓相交于四點,設(shè)原點到四邊形的一邊距離為,試求滿足的條件.

          (1);(2);(3).

          解析試題分析:(1)利用已知條件找出解出即得;(2)設(shè)直線方程,聯(lián)立方程組消去得到關(guān)于的方程,由求出的范圍;(3)設(shè)直線的方程為聯(lián)立方程組消去到關(guān)于的方程,利用、韋達定理、點到直線的距離公式求解.
          試題解析:(1)依題意,,解得,故橢圓的方程為.
          (2)如圖,依題意,直線的斜率必存在,

          設(shè)直線的方程為,,
          聯(lián)立方程組,消去整理得,
          由韋達定理,,,
          ,
          因為直線與橢圓相交,則,
          ,解得,
          當(dāng)為銳角時,向量,則
          ,解得,
          故當(dāng)為銳角時,.
          如圖,

          依題意,直線的斜率存在,設(shè)其方程為,,由于,
          ,即,又
                    ①
          聯(lián)立方程組,消去,
          由韋達定理得,,代入①得
          ,
          令點到直線的距離為1,則,即,
          ,
          整理得.
          考點:橢圓的性質(zhì),直線與橢圓的位置關(guān)系.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的左、右焦點和短軸的兩個端點構(gòu)成邊長為2的正方形.

          (Ⅰ)求橢圓的方程;
          (Ⅱ)過點的直線與橢圓相交于,兩點.點,記直線的斜率分別為,當(dāng)最大時,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖已知橢圓的中點在原點,焦點在x軸上,長軸是短軸的2倍且過點,平行于的直線在y軸的截距為,且交橢圓與兩點,

          (1)求橢圓的方程;(2)求的取值范圍;(3)求證:直線、與x軸圍成一個等腰三角形,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,左、右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,)在橢圓C上.

          (I)求橢圓C的方程;
          (II)如圖,動直線與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且,,四邊形面積S的求最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知分別是橢圓的左、右焦點,橢圓的離心率
          (I)求橢圓的方程;(II)已知直線與橢圓有且只有一個公共點,且與直線相交于點.求證:以線段為直徑的圓恒過定點

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,動點到兩點,的距離之和等于4,設(shè)點的軌跡為曲線C,直線過點且與曲線C交于A,B兩點.
          (Ⅰ)求曲線C的軌跡方程;
          (Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          拋物線M: 的準(zhǔn)線過橢圓N: 的左焦點,以坐標(biāo)原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.

          (1)求拋物線M的方程.
          (2)設(shè)點A的橫坐標(biāo)為x1,點C的橫坐標(biāo)為x2,曲線M上點D的橫坐標(biāo)為x1+2,求直線CD的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓方程為,過右焦點斜率為1的直線到原點的距離為.

          (1)求橢圓方程.
          (2)已知為橢圓的左右兩個頂點,為橢圓在第一象限內(nèi)的一點,為過點且垂直軸的直線,點為直線與直線的交點,點為以為直徑的圓與直線的一個交點,求證:三點共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知點,若動點滿足
          (1)求動點的軌跡曲線的方程;
          (2)在曲線上求一點,使點到直線:的距離最。

          查看答案和解析>>

          同步練習(xí)冊答案