日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,四棱錐中,底面為矩形, 平面, ,點的中點.

          )求證: 平面

          )求證:平面平面

          【答案】(1)證明見解析;(2)證明見解析.

          【解析】試題分析:

          (1)連接,連接.利用幾何關(guān)系可證得,結(jié)合線面平行的判斷定理則有直線平面

          (2)利用線面垂直的定義有,結(jié)合可證得平面,則,由幾何關(guān)系有,則平面,利用面面垂直的判斷定理即可證得平面平面

          試題解析:

          )連接,連接

          因為矩形的對角線互相平分,

          所以在矩形中,

          中點,

          所以在中,

          是中位線,

          所以,

          因為平面 平面,所以平面

          )因為平面 平面,

          所以

          在矩形中有,

          ,

          所以平面

          因為平面,

          所以

          由已知,三角形是等腰直角三角形, 是斜邊的中點,

          所以,

          因為,

          所以平面,

          因為平面,

          所以平面平面

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐C﹣OAB中,CO⊥平面AOB,OA=OB=2OC=2,AB=2 ,D為AB的中點.
          (Ⅰ)求證:AB⊥平面COD;
          (Ⅱ)若動點E滿足CE∥平面AOB,問:當(dāng)AE=BE時,平面ACE與平面AOB所成的銳二面角是否為定值?若是,求出該銳二面角的余弦值;若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).

          (1)若f(x)的定義域和值域均是[1,a],求實數(shù)a的值;

          (2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對任意的x∈[1,a+1],總有f(x)≤0,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若a≥0,試討論函數(shù)g(x)=lnx+ax2﹣(2a+1)x在(0,+∞)上的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),給出下列結(jié)論:

          (1)若對任意,且,都有,則為R上的減函數(shù);

          (2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);

          (3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

          (4)t為常數(shù),若對任意的,都有關(guān)于對稱。

          其中所有正確的結(jié)論序號為_________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】濮陽市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬元)的數(shù)據(jù)如下表:

          年份

          2010

          2011

          2012

          2013

          2014

          2015

          2016

          年份代號x

          1

          2

          3

          4

          5

          6

          7

          人均純收入y

          2.9

          3.3

          3.6

          4.4

          4.8

          5.2

          5.9

          (Ⅰ)求y關(guān)于x的線性回歸方程;
          (Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預(yù)測該村2017年人均純收入.
          附:回歸直線的斜率和截距的最小乘法估計公式分別為: = , =

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,多面體PABCD的直觀圖及三視圖如圖所示,EF分別為PC、BD的中點.

          I)求證:EF∥平面PAD

          II)求證:平面PDC⊥平面PAD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2 , |F1F2|=4,P是雙曲線右支上一點,直線PF2交y軸于點A,△APF1的內(nèi)切圓切邊PF1于點Q,若|PQ|=1,則雙曲線的離心率為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)y=f(x)圖象上不同兩點A(x1 , y1),B(x2 , y2)處的切線的斜率分別是kA , kB , 規(guī)定φ(A,B)= (|AB|為線段AB的長度)叫做曲線y=f(x)在點A與點B之間的“彎曲度”,給出以下命題: ①函數(shù)y=x3圖象上兩點A與B的橫坐標分別為1和﹣1,則φ(A,B)=0;
          ②存在這樣的函數(shù),圖象上任意兩點之間的“彎曲度”為常數(shù);
          ③設(shè)點A,B是拋物線y=x2+1上不同的兩點,則φ(A,B)≤2;
          ④設(shè)曲線y=ex(e是自然對數(shù)的底數(shù))上不同兩點A(x1 , y1),B(x2 , y2),則φ(A,B)<1.
          其中真命題的序號為 . (將所有真命題的序號都填上)

          查看答案和解析>>

          同步練習(xí)冊答案