日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù) .

          1)當(dāng)時,求曲線在點處的切線方程;

          2當(dāng)時,求在區(qū)間上的最大值和最小值;

          3)當(dāng)時,若方程在區(qū)間上有唯一解,求的取值范圍.

          【答案】(1);(2最大值為,最小值為;(3

          【解析】試題分析:(1)可得切線斜率,再由點斜式可得切線方程;

          (2),可得,所以在區(qū)間上單調(diào)遞增,從而可得最值;

          (3)當(dāng)時, .設(shè) ,分析可知在區(qū)間上單調(diào)遞減,且, ,所以存在唯一的,使,即,結(jié)合函數(shù)單調(diào)性可得解.

          試題解析:

          1)當(dāng)時, ,

          所以, .

          又因為

          所以曲線在點處的切線方程為.

          2)當(dāng)時, ,

          所以

          當(dāng)時, , ,

          所以.

          所以在區(qū)間上單調(diào)遞增

          因此在區(qū)間上的最大值為,最小值為.

          3當(dāng)時, .

          設(shè), ,

          因為, ,所以.

          所以在區(qū)間上單調(diào)遞減

          因為, ,

          所以存在唯一的,使,即.

          所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減

          因為, ,又因為方程在區(qū)間上有唯一解,

          所以.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.

          )求B;

          )若b=2,求△ABC面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖一塊長方形區(qū)域ABCD,AD=2(km),AB=1(km).在邊AD的中點O處,有一個可轉(zhuǎn)動的探照燈,其照射角∠EOF始終為,設(shè)∠AOE=,探照燈O照射在長方形ABCD內(nèi)部區(qū)域的面積為S.

          (1)當(dāng)0時,寫出S關(guān)于的函數(shù)表達(dá)式;

          (2)若探照燈每9分鐘旋轉(zhuǎn)“一個來回”(OEOA轉(zhuǎn)到OC,再回到OA,稱“一個來回”,忽略OEOAOC反向旋轉(zhuǎn)時所用時間),且轉(zhuǎn)動的角速度大小一定,設(shè)AB邊上有一點G,且∠AOG,求點G在“一個來回”中,被照到的時間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱臺中, 底面,平面平面的中點.

          (1)證明:

          (2)若,且,求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在上的函數(shù)滿足:對于任意實數(shù)都有恒成立,且當(dāng)時,

          (Ⅰ)判定函數(shù)的單調(diào)性,并加以證明;

          (Ⅱ)設(shè),若函數(shù)有三個零點從小到大分別為,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)若,求曲線在點處的切線方程;

          (Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;

          (Ⅲ)若,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)工會利用 “健步行”開展健步走積分獎勵活動會員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分)記年齡不超過40歲的會員為類會員,年齡大于40歲的會員為類會員為了解會員的健步走情況,工會從兩類會員中各隨機(jī)抽取名會員,統(tǒng)計了某天他們健步走的步數(shù),并將樣本數(shù)據(jù)分為 , , , , 九組,將抽取的類會員的樣本數(shù)據(jù)繪制成頻率分布直方圖, 類會員的樣本數(shù)據(jù)繪制成頻率分布表圖、表如下所示).

          的值;

          從該地區(qū)類會員中隨機(jī)抽取名,設(shè)這名會員中健步走的步數(shù)在千步以上(含千步)的人數(shù)為,求的分布列和數(shù)學(xué)期望;

          設(shè)該地區(qū)類會員和類會員的平均積分分別為,試比較的大。ㄖ恍鑼懗鼋Y(jié)論).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險,在原地等待營救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現(xiàn)乙船朝北偏東的方向即沿直線CB前往B處救援,則等于 ( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓,圓,且圓與圓存在公共點,則圓與直線的位置關(guān)系是( 。

          A. 相切B. 相離C. 相交D. 相切或相交

          查看答案和解析>>

          同步練習(xí)冊答案