【題目】已知向量 =(cosα,sinα),
=(cosβ,sinβ),|
﹣
|=
.
(1)求cos(α﹣β)的值;
(2)若﹣ <β<0<α<
,且sinβ=﹣
,求sinα的值.
【答案】
(1)解:∵ =(cosα,sinα),
=(cosβ,sinβ),∴|
|=|
|=1,
∴| ﹣
|2=
=1+1﹣2(cosαcosβ+sinαsinβ)=2﹣2cos(α﹣β),
又∵| ﹣
|=
,
∴| ﹣
|2=2﹣2cos(α﹣β)=
,
∴cos(α﹣β)= ;
(2)解:∵﹣ <β<0<α<
,∴0<α﹣β<π,
由cos(α﹣β)= 可得sin(α﹣β)=
,由sinβ=﹣
可得cosβ=
,
∴sinα=sin[(α﹣β)+β]=sin(α﹣β)cosβ+cos(α﹣β)sinβ
= =
【解析】(1)由模長公式和三角函數(shù)公式可得| ﹣
|2=2﹣2co(α﹣β)=
,變形可得;(2)結合角的范圍分別可得sin(α﹣β)=
和cosβ=
,而sinα=sin[(α﹣β)+β]=sin(α﹣β)cosβ+cos(α﹣β)sinβ,代入化簡可得.
【考點精析】關于本題考查的兩角和與差的余弦公式,需要了解兩角和與差的余弦公式:才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點
處的切線與曲線
的公共點的橫坐標之和為3,求
的值;
(2)當時,對任意
,使
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,點E、F分別為棱AB、PD的中點.
(1)求證:AF∥平面PCE;
(2)求三棱錐C﹣BEP的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:
其中一個數(shù)字被污損.
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學習積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機統(tǒng)計了4位觀眾的周均學習成語知識的時間(單位:小時)與年齡
(單位:歲),并制作了對照表(如下表所示)
年齡 | 20 | 30 | 40 | 50 |
周均學習成語知識時間 | 2.5 | 3 | 4 | 4.5 |
由表中數(shù)據(jù),試求線性回歸方程,并預測年齡為55歲觀眾周均學習成語知識時間.
參考公式: ,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在橢圓
內(nèi),過
的直線
與橢圓
相交于A,B兩點,且點
是線段AB的中點,O為坐標原點.
(Ⅰ)是否存在實數(shù)t,使直線和直線OP的傾斜角互補?若存在,求出
的值,若不存在,試說明理由;
(Ⅱ)求面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設關于的一元二次方程
.
(1)若是從0,1,2,3四個數(shù)中任取的一個數(shù),
是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若時從區(qū)間
上任取的一個數(shù),
是從區(qū)間
上任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x ,
(1)判斷函數(shù)的奇偶性;
(2)用函數(shù)單調性定義證明:f(x)在(0,+∞)上為單調增函數(shù);
(3)若f(x)=52﹣x+3,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com