日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=x2-2x+3,g(x)=x2-x,
          (1)解不等式|f(x)-g(x)|≥2014;
          (2)若|f(x)-a|<2恒成立的充分條件是1≤x≤2,求實(shí)數(shù)a的取值范圍.
          分析:(1)由題意可得得|x-3|≥2 014,可得x-3≥2 014,或x-3≤-2 014,由此解得故不等式的解集.
          (2)依題意知:當(dāng)1≤x≤2時(shí),|f(x)-a|<2恒成立,即f(x)-2<a<f(x)+2恒成立.求得當(dāng)1≤x≤2時(shí),f(x)=(x-1)2+2的最值,可得實(shí)數(shù)a的取值范圍
          解答:解:(1)由|f(x)-g(x)|≥2 014 得|-x+3|≥2 014,即|x-3|≥2 014,
          所以,x-3≥2 014或x-3≤-2 014,解得x≥2017,或x≤-2011,
          故不等式的解集為{x|x≥2017,或x≤-2011 }.
          (2)依題意知:當(dāng)1≤x≤2時(shí),|f(x)-a|<2恒成立,所以當(dāng)1≤x≤2時(shí),-2<f(x)-a<2恒成立,
          即f(x)-2<a<f(x)+2恒成立.
          由于當(dāng)1≤x≤2時(shí),f(x)=x2-2x+3=(x-1)2+2的最大值為3,最小值為2,因此3-2<a<2+2,即1<a<4,
          所以,實(shí)數(shù)a的取值范圍(1,4).
          點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,不等式的性質(zhì)應(yīng)用,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
          (1)判斷函數(shù)f(x)的奇偶性;
          (2)求函數(shù)f(x)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,則實(shí)數(shù)a的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
          1x+1
          ).
          (1)討論f(x)的單調(diào)性.
          (2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
          (1)若曲線y=f(x)在x=1處的切線為y=x,求實(shí)數(shù)m的值;
          (2)當(dāng)m=2時(shí),若方程f(x)-h(x)=0在[1,3]上恰好有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
          (3)是否存在實(shí)數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
          (1)若a=-6,求f(x)在[0,3]上的最值;
          (2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
          (3)求證:不等式ln
          n+1
          n
          n-1
          n3
          (n∈N*)恒成立.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案