【題目】已知拋物線:
的焦點為
,過
且斜率為
的直線
與拋物線
交于
,
兩點,
在
軸的上方,且點
的橫坐標為4.
(1)求拋物線的標準方程;
(2)設(shè)點為拋物線
上異于
,
的點,直線
與
分別交拋物線
的準線于
,
兩點,
軸與準線的交點為
,求證:
為定值,并求出定值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
,
是橢圓短軸的一個頂點,且
是面積為
的等腰直角三角形.
(1)求橢圓的標準方程;
(2)已知直線:
與橢圓
交于不同的
,
兩點,若橢圓
上存在點
,使得四邊形
恰好為平行四邊形,求直線
與坐標軸圍成的三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的參數(shù)方程是
(
為參數(shù)),以坐標原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程是
.
(1)求曲線與
交點的極坐標;
(2)、
兩點分別在曲線
與
上,當
最大時,求
的面積(
為坐標原點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在梯形中(圖1),
,
,
,過
、
分別作
的垂線,垂足分別為
、
,且
,將梯形
沿
、
同側(cè)折起,使得
,且
,得空間幾何體
(圖2).直線
與平面
所成角的正切值是
.
(1)求證:平面
;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在梯形中,
,
為
的中點,線段
與
交于
點(如圖1).將
沿
折起到
的位置,使得二面角
為直二面角(如圖2).
(1)求證:平面
;
(2)線段上是否存在點
,使得
與平面
所成角的正弦值為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設(shè)A型進口車關(guān)稅稅率在2002年是100%,在2007年是25%,2002年A型進口車每輛價格為64萬元(其中含32萬元關(guān)稅稅款)
(1)已知與A型車性能相近的B型國產(chǎn)車,2002年每輛價格為46萬元,若A型車的價格只受關(guān)稅降低的影響,為了保證2007年B型車的價格不高于A型車價格的90%,B型車價格要逐年減低,問平均每年至少下降多少萬元?
(2)某人在2002年將33萬元存入銀行,假設(shè)銀行扣利息稅后的年利率為1.8%(5年內(nèi)不變),且每年按復利計算(上一年的利息計入第二年的本金),那么5年到期時這筆錢連本帶息是否一定夠買按(1)中所述降價后的B型車一輛?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)軸、
軸正方向的單位向量分別為
,坐標平面上的點
滿足條件:
,
.
(1)若數(shù)列的前
項和為
,且
,求數(shù)列
的通項公式.
(2)求向量的坐標,若
的面積
構(gòu)成數(shù)列
,寫出數(shù)列
的通項公式.
(3)若,指出
為何值時,
取得最大值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(
為自然對數(shù)的底,
為常數(shù),
)有兩個極值點
,且
.
(Ⅰ)求的取值范圍;
(Ⅱ)若恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com