日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)對任意實數(shù)x,y都有f(x+y)=f(x)+f(y),且x>0時,f(x)<0,f(1)=-2.
          (1)求證f(x)是奇函數(shù);
          (2)求f(x)在[-3,3]上的最大值和最小值.
          分析:(1)令x=y=0⇒f(0)=0;再令y=-x⇒f(-x)=-f(x)從而可證f(x)是奇函數(shù);
          (2)任取x1<x2,則x2-x1>0,利用單調(diào)性的定義判斷函數(shù)f(x)的單調(diào)性,再求f(x)在[-3,3]上的最大值和最小值.
          解答:解:(1)證明:令x=y=0,知f(0)=0;
          再令y=-x,則f(0)=f(x)+f(-x)=0,
          ∴f(-x)=-f(x),
          ∴f(x)為奇函數(shù);
          (2)任取x1<x2,則x2-x1>0,
          ∴f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,
          ∴f(x)為減函數(shù).
          而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,
          f(-3)=-f(3)=6.
          ∴f(x)max=f(-3)=6,f(x)min=f(3)=-6.
          點評:本題考查抽象函數(shù)及其應(yīng)用,考查賦值法,突出考查函數(shù)奇偶性與單調(diào)性的判斷與證明,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)<0,f(1)=-2
          (1)證明f(x)為奇函數(shù).
          (2)證明f(x)在R上是減函數(shù).
          (3)若f(2x+5)+f(6-7x)>4,求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)對任意實數(shù)x,y,都有f(x+y)=f(x)+f(y),若x>0時,f(x)<0,且f(1)=2,
          ①求f(x)在[-3,3]上的最大值和最小值.
          ②解不等式f(t-1)+f(t)<0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)對任意x∈R,都有f(x+3)=-
          1
          f(x)
          ,且當(dāng)x∈(-3,-2)時,f(x)=5x,則f(201.2)=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)對任意x,y∈R,都有f(x+y)=f(x)+f(y),當(dāng)x≠0時,xf(x)<0,f(1)=-2
          (1)求證:f(x)是奇函數(shù);
          (2)試問:在-n≤x≤n時(n∈N*),f(x)是否有最大值?如果有,求出最大值,如果沒有,說明理由.
          (3)解關(guān)于x的不等式
          1
          2
          f(bx2)-f(x)≥
          1
          2
          f(b2x)-f(b),(b>0)

          查看答案和解析>>

          同步練習(xí)冊答案