日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當x∈[-2,0)時,f(x)=-1,若在區(qū)間(-2,6)內(nèi)的關(guān)于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4個不同的實數(shù)根,則實數(shù)a的取值范圍是( )
          A.(,1)
          B.(1,4)
          C.(1,8)
          D.(8,+∞)
          【答案】分析:在同一直角坐標系中作出f(x)與h(x)=loga(x+2)在區(qū)間(-2,6)內(nèi)的圖象,結(jié)合題意可得到關(guān)于a的關(guān)系式,從而得到答案.
          解答:解:∵當x∈[-2,0)時,f(x)=-1,
          ∴當x∈(0,2]時,-x∈[-2,0),
          ∴f(-x)=-1=-1,又f(x)是定義在R上的偶函數(shù),
          ∴f(x)=-1(0<x≤2),又f(2+x)=f(2-x),
          ∴f(x)的圖象關(guān)于直線x=2對稱,且f(4+x)=f(-x)=f(x),
          ∴f(x)是以4為周期的函數(shù),
          ∵在區(qū)間(-2,6)內(nèi)的關(guān)于x的方程f(x)-loga(x+2)=0(a>0且a≠1)恰有4個不同的實數(shù)根,
          令h(x)=loga(x+2),即f(x)=h(x)=loga(x+2)在區(qū)間(-2,6)內(nèi)有有4個交點,
          在同一直角坐標系中作出f(x)與h(x)=loga(x+2)在區(qū)間(-2,6)內(nèi)的圖象,
          ∴0<loga(6+2)<1,
          ∴a>8.
          故選D.
          點評:本題考查根的存在性及根的個數(shù)判斷,求得f(x)的解析式,作出f(x)與h(x)=loga(x+2)在區(qū)間(-2,6)內(nèi)的圖象是關(guān)鍵,考查作圖能力與數(shù)形結(jié)合的思想,屬于難題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          3、設(shè)f(x)是定義在R上的奇函數(shù),且f(3)+f(-2)=2,則f(2)-f(3)=
          -2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=2x+2x-1,則f(-1)=( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且f(1)=0,當x>0時,有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且y=f(x)滿足f(1-x)=f(x),且f( 
          1
          2
           )=2
          ,則f(1)+f(
          3
          2
          )+f(2)+f(
          5
          2
          )+f(3)+f(
          7
          2
          )
          =
          -2
          -2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x).當x∈[0,2]時,f(x)=2x-x2+a(a是常數(shù)).則x∈[2,4]時的解析式為( 。
          A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

          查看答案和解析>>

          同步練習冊答案