日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】函數f(x)=x3﹣3ax+b(a>0)的極大值為6,極小值為2,則f(x)的減區(qū)間是

          【答案】(﹣1,1)
          【解析】解::令f′(x)=3x2﹣3a=0,得x=± , 令f′(x)>0得x> 或x<﹣ ;令f′(x)<0得﹣ <x<
          即x=﹣ 取極大,x= ,取極小.
          ∵函數f(x)=x3﹣3ax+b(a>0)的極大值為6,極小值為2,
          ∴f( )=2,f(﹣ )=6,
          即a ﹣3a +b=2且﹣a +3a +b=6,
          得a=1,b=4,
          則f′(x)=3x2﹣3,由f′(x)<0得﹣1<x<1.
          則減區(qū)間為(﹣1,1).
          所以答案是:(﹣1,1).
          【考點精析】通過靈活運用函數的極值與導數,掌握求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值即可以解答此題.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】給出下列三個類比結論.
          ①(ab)n=anbn與(a+b)n類比,則有(a+b)n=an+bn
          ②loga(xy)=logax+logay與sin(α+β)類比,則有sin(α+β)=sinαsinβ;
          ③(a+b)2=a2+2ab+b2與( + 2類比,則有( + 2= 2+2 + 2
          其中結論正確的個數是(
          A.0
          B.1
          C.2
          D.3

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖是2012年在某大學自主招生考試的面試中,七位評委為某考生打出的分數的莖葉統計圖,去掉一個最高分和一個最低分后,所剩數據的平均數和方差分別為(

          7

          9

          8

          4

          4

          6

          4

          7

          9

          3


          A.84,4.84
          B.84,1.6
          C.85,1.6
          D.85,4

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】某校為選拔參加“央視猜燈謎大賽”的隊員,在校內組織猜燈謎競賽.規(guī)定:第一階段知識測試成績不小于分的學生進入第二階段比賽.現有名學生參加知識測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.

          (1)估算這名學生測試成績的中位數,并求進入第二階段比賽的學生人數;

          (2)將進入第二階段的學生分成若干隊進行比賽.現甲、乙兩隊在比賽中均已獲得分,進入最后強答階段.搶答規(guī)則:搶到的隊每次需猜條謎語,猜對條得分,猜錯條扣分.根據經驗,甲隊猜對每條謎語的概率均為,乙隊猜對每條謎語的概率均為,猜對第條的概率均為.若這兩條搶到答題的機會均等,您做為場外觀眾想支持這兩隊中的優(yōu)勝隊,會把支持票投給哪隊?

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知F為橢圓C: + =1的右焦點,橢圓C上任意一點P到點F的距離與點P到直線l:x=m的距離之比為 ,求:
          (1)直線l方程;
          (2)設A為橢圓C的左頂點,過點F的直線交橢圓C于D、E兩點,直線AD、AE與直線l分別相交于M、N兩點.以MN為直徑的是圓是否恒過一定點,若是,求出定點坐標,若不是請說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,幾何體EFABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,ABCD,ADDCAD=2,AB=4ADF=90°

          求證:ACFB

          求二面角EFBC的大。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】設函數.

          (1)當時,求函數的極值;

          (2)設,對任意,都有,求實數的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知橢圓右頂點與右焦點的距離為,短軸長為

          (I)求橢圓的方程;

          )過左焦點F的直線與橢圓分別交于A、B兩點,若三角形OAB的面積為求直線AB的方程。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,地面上有一豎直放置的圓形標志物,圓心為C,與地面的接觸點為G.與圓形標志物在同一平面內的地面上點P處有一個觀測點,且PG=50m.在觀測點正前方10m處(即PD=10m)有一個高為10m(即ED=10m)的廣告牌遮住了視線,因此在觀測點所能看到的圓形標志的最大部分即為圖中從A到F的圓弧.

          (1)若圓形標志物半徑為25m,以PG所在直線為x軸,G為坐標原點,建立直角坐標系,求圓C和直線PF的方程;
          (2)若在點P處觀測該圓形標志的最大視角(即∠APF)的正切值為 ,求該圓形標志物的半徑.

          查看答案和解析>>

          同步練習冊答案