日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知斜三棱柱ABC-A1B1C1的側(cè)面BB1C1C是邊長為2的菱形,∠B1BC=60°,側(cè)面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C為30°.
          (1)求證:AC⊥平面BB1C1C;
          (2)求AB1與平面BB1C1C所成角的正切值.

          【答案】分析:(1)由平面BB1C1C⊥平面ABC且平面BB1C1C∩平面ABC=BC,AC⊥BC,由面面垂直的性質(zhì)定理可得AC⊥平面BB1C1C
          (2)由(1)知AC⊥平面BB1C1C,則有∠AB1C為AB1與平面BB1C1C所成的角,連接B1C,則∠AB1C為AB1與平面BB1C1C所成的角,在Rt△ACB1中可求得tan∠∠AB1C.
          解答:證明:(1)∵平面BB1C1C⊥平面ABC
          平面BB1C1C∩平面ABC=BC
          又∵AC⊥BC,AC?平面ABC
          ∴AC⊥平面BB1C1C(6分)
          (2)取BB1的中點D,
          AC⊥平面BB1C1C
          ∴AC⊥BB1
          ∴BB1⊥平面ADC
          ∴AD⊥BB1
          ∴∠CDA為二面角A-BB1-C的平面角
          ∴∠CDA=30°
          ∵CD=
          ∴AC=1(8分)
          連接B1C,則∠AB1C為AB1與平面BB1C1C所成的角(10分)
          在Rt△ACB1中tan∠AB1C=(12分)
          點評:本題主要考查線線垂直,線面垂直,面面垂直的轉(zhuǎn)化及在求線面角,二面角中的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1的側(cè)面BB1C1C是邊長為2的菱形,∠B1BC=60°,側(cè)面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C為30°.
          (1)求證:AC⊥平面BB1C1C;
          (2)求AB1與平面BB1C1C所成角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1的側(cè)面BB1C1C與底面ABC垂直,BB1=BC,∠B1BC=60°,AB=AC,M是B1C1的中點.
          (Ⅰ)求證:AB1∥平面A1CM;
          (Ⅱ)若AB1與平面BB1C1C所成的角為45°,求二面角B-AC-B1的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知斜三棱柱ABC-A1B1C1的底面邊長AB=2,BC=3,BC⊥面ABC1,CC1與面ABC所成的角為60°則斜三棱柱ABC-A1B1C1體積的最小值是
          9
          3
          9
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,已知斜三棱柱ABC-A1B1C1的各棱長均為2,側(cè)棱與底面所成角為
          π3
          ,且側(cè)面ABB1A1垂直于底面.
          (1)判斷B1C與C1A是否垂直,并證明你的結(jié)論;
          (2)求四棱錐B-ACC1A1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,點D為AC的中點,A1D⊥平面ABC,A1B⊥ACl
          (I)求證:AC1⊥AlC; 
          (Ⅱ)求二面角A-A1B-C的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案