日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),且f(
          x
          y
          )=f(x)-f(y)

          (1)求f(1)的值;
          (2)若f(6)=1,解不等式f(x+3)+f(
          1
          x
          )≤2
          分析:(1)令x=y=1⇒f(1)=0;
          (2)依題意,可求得f(
          1
          x
          )=-f(x),于是f(x+3)-f(
          1
          x
          )<2?f(x+3)+f(x)<2?f(x+3)-1<1-f(x),利用已知f(6)=1與f(
          x
          y
          )=f(x)-f(y),可得f(
          x+3
          6
          )<f(
          6
          x
          ),
          最后由函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),即可求得原不等式的解集.
          解答:解:(1)∵f(
          x
          y
          )=f(x)-f(y),
          ∴令x=y=1得:f(1)=0;
          (2)∵f(
          1
          x
          )=f(1)-f(x)=-f(x),
          ∴原不等式f(x+3)-f(
          1
          x
          )<2?f(x+3)+f(x)<2,
          ∴f(x+3)-1<1-f(x),又f(6)=1,
          ∴f(x+3)-f(6)<f(6)-f(x)
          即f(
          x+3
          6
          )<f(
          6
          x
          ),
          ∵函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),
          則0<
          x+3
          6
          6
          x
          ,
          解得:0<x<
          -3+3
          17
          2

          ∴原不等式的解集為{x|0<x<
          -3+3
          17
          2
          }.
          點(diǎn)評(píng):本題考查抽象函數(shù)及其應(yīng)用,求得f(
          1
          x
          )=-f(x)是關(guān)鍵,著重考查轉(zhuǎn)化思想與函數(shù)單調(diào)性的綜合應(yīng)用,屬于難題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          2x+2-x
          2
          ,g(x)=
          2x-2-x
          2
          ,
          (1)計(jì)算:[f(1)]2-[g(1)]2;
          (2)證明:[f(x)]2-[g(x)]2是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=x+
          a
          x
          的定義域?yàn)椋?,+∞),且f(2)=2+
          2
          2
          .設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
          (1)求a的值.
          (2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說明理由.
          (3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)
          是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
          1
          2
          的點(diǎn)P滿足2
          OP
          =
          OM
          +
          ON
          (O為坐標(biāo)原點(diǎn)).
          (Ⅰ)求證:y1+y2為定值;
          (Ⅱ)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*,且n≥2,求Sn;
          (Ⅲ)已知an=
          1
          6
          ,                          n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          ,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
          (1)求證:y1+y2為定值;
          (2)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )(n∈N*,N≥2),求Sn;
          (3)在(2)的條件下,若an=
          1
          6
           ,n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          (n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sin(2x-
          π
          6
          ),g(x)=sin(2x+
          π
          3
          ),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案