日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點O、D分別是AC、PC的中點,OP⊥底面ABC.
          (Ⅰ)求證:OD∥平面PAB;
          (Ⅱ)當k=時,求直線PA與平面PBC所成角的正弦值;
          (Ⅲ)當k取何值時,O在平面PBC內的射影恰好為△PBC的重心?
          (注:若△ABC的三點坐標分別為A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3),則該三角形的重心坐標為:.)

          【答案】分析:(Ⅰ)利用三角形的中位線定理和線面平行的判定定理即可證明;
          (Ⅱ)利用線面角公式=即可得出;
          (Ⅲ)不妨設OB=2,則分別表示出點A、B、C的坐標,再利用AB=BC==kPA即可表示出點P的坐標,利用重心的定義即可得出△PBC的重心G的坐標,若滿足O在平面PBC內的射影恰好為△PBC的重心,則OG⊥平面PBC,利用向量的數量積與垂直的關系即可得出k的值.
          解答:(Ⅰ)證明:∵點O、D分別是AC、PC的中點,∴OD∥PA.
          又∵OD?平面PAB,PA?平面PAB,
          ∴OD∥平面PAB.
          (Ⅱ)如圖所示距離空間直角坐標系.
          當k=時,不妨設OB=2,則OA=OC=2,AB=2,∴AP=,
          ∴OP=
          ∴A(0,-2,0),B(2,0,0),C(0,2,0),P(0,0,),
          ,,
          設平面PBC的法向量為

          令z=1,則=y.∴
          設直線PA與平面PBC所成的角為θ,
          ==
          ∴直線PA與平面PBC所成角的正弦值為
          (Ⅲ)不妨設OB=2,則AO=OC=2,AB=BC==kPA,∴,可得=
          ∴A(0,-2,0),B(2,0,0),C(0,2,0),P(0,0,
          ),,
          設G(x,y,z)為△PBC的重心,則G
          假設點O在平面PBC內的射影恰好為△PBC的重心,則OG⊥平面PBC.
          ,即,又k>0,解得k=1.
          ∴當k=1時,O在平面PBC內的射影恰好為△PBC的重心.
          點評:熟練掌握三角形的中位線定理和線面平行的判定定理、線面角公式=、通過建立空間直角坐標系及重心的定義即可得出△PBC的重心G的坐標、線面垂直的性質定理、向量的數量積與垂直的關系是解題的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          精英家教網如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設M是底面ABC內一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
          1
          2
          ,x,y),且
          1
          x
          +
          a
          y
          ≥8恒成立,則正實數a的最小值為
           

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當△AEF的面積最大時,tanθ的值為( 。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
          (Ⅰ)求證:DE‖平面PBC;
          (Ⅱ)求證:AB⊥PE;
          (Ⅲ)求二面角A-PB-E的大小.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點繞三棱錐側面一圈回到點A的最短距離是
          3
          ,則PA=
          1
          1

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          精英家教網如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點D,E分別在棱
          PB,PC上,且BC∥平面ADE
          (I)求證:DE⊥平面PAC;
          (Ⅱ)當二面角A-DE-P為直二面角時,求多面體ABCED與PAED的體積比.

          查看答案和解析>>

          同步練習冊答案