日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正四棱錐P—ABCD的底面邊長及側(cè)棱長均為13,M、N分別是PA、BD上的點(diǎn),且PM∶MA=BN∶ND=5∶8.

          (1)求證:直線MN∥平面PBC;

          (2)求直線MN與平面ABCD所成的角.

          (1)證明:∵P—ABCD是正四棱錐,

              ∴ABCD是正方形.連結(jié)AN并延長交BC于點(diǎn)E,連結(jié)PE.

              ∵AD∥BC,

              ∴EN∶AN=BN∶ND.

              又∵BN∶ND=PM∶MA,∴EN∶AN=PM∶MA.

              ∴MN∥PE.

              又∵PE在平面PBC內(nèi),∴MN∥平面PBC.

          (2)解:由(1)知MN∥PE,

              ∴MN與平面ABCD所成的角就是PE與平面ABCD所成的角.

              設(shè)點(diǎn)P在底面ABCD上的射影為O,連結(jié)OE,則∠PEO為PE與平面ABCD所成的角.

              由正棱錐的性質(zhì)知PO==.

              由(1)知,BE∶AD=BN∶ND=5∶8,∴BE=.

              在△PEB中,∠PBE=60°,PB=13,BE=,

              根據(jù)余弦定理,得PE=.

          在Rt△POE中,PO=,PE=,

              ∴sin∠PEO==.

              故MN與平面ABCD所成的角為arcsin.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正四棱錐P-ABCD,PA=2,AB=
          2
          ,M是側(cè)棱PC的中點(diǎn),則異面直線PA與BM所成角為
           
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知正四棱錐P-ABCD的全面積為2,記正四棱錐的高為h.
          (1)用h表示底面邊長,并求正四棱錐體積V的最大值;
          (2)當(dāng)V取最大值時(shí),求異面直線AB和PD所成角的大。
          (結(jié)果用反三角函數(shù)值表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理)已知正四棱錐P—ABCD中,PA=2,AB=,M是側(cè)棱PC的中點(diǎn),則異面直線PA與BM所成角的大小為__________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知正四棱錐P-ABCD的全面積為2,記正四棱錐的高為h.
          (1)用h表示底面邊長,并求正四棱錐體積V的最大值;
          (2)當(dāng)V取最大值時(shí),求異面直線AB和PD所成角的大。
          (結(jié)果用反三角函數(shù)值表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年北京市海淀區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

          已知正四棱錐P-ABCD,PA=2,AB=,M是側(cè)棱PC的中點(diǎn),則異面直線PA與BM所成角為   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案