日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 選修4-2:矩陣與變換
          已知矩陣A=
          21
          -13
          將直線l:x+y-1=0變換成直線l′.
          (1)求直線l′的方程;
          (2)判斷矩陣A是否可逆.若可逆,求出矩陣A的逆矩陣A-1;若不可逆,請(qǐng)說明理由.
          分析:(1)任取直線l上一點(diǎn)P(x0,y0)經(jīng)矩陣A變換后點(diǎn)為Q(x,y),利用矩陣乘法得出坐標(biāo)之間的關(guān)系,求出直線l的方程;
          (2)利用待定系數(shù)法,先假設(shè)所求的變換矩陣A-1=
          ab
          cd
          ,再利用AA-1=
          10
          01
          建立方程組,解之即可.
          解答:解:(1)任取直線l上一點(diǎn)P(x0,y0)經(jīng)矩陣A變換后點(diǎn)為Q(x,y),
          21
          -13
           
          x0 
          y0 
          =
          x 
          y 

          所以
          x=2x0+y0
          y=-x0+3y0
          x0=
          3x-y
          7
          y0=
          x+2y
          7

          又因點(diǎn)P(x0,y0)在直線l:x+y-1=0上,所以
          3x-y
          7
          +
          x+2y
          7
          -1=0

          故直線l′的方程為4x+y-7=0
          (2)因?yàn)?span id="ydbtxkq" class="MathJye">
          .
          21
          -13
          .
          ≠0,所以矩陣A可逆
          設(shè)A-1=
          ab
          cd
          ,所以AA-1=
          10
          01

          2a+c=1
          2b+d=0
          -a+3c=0
          -b+3d=1
          解得
          a=
          3
          7
          b=-
          1
          7
          c=
          1
          7
          d=
          2
          7

          所以A-1=
          3
          7
          -
          1
          7
          1
          7
          2
          7
          點(diǎn)評(píng):本題以變換為依托,考查矩陣及其逆矩陣,關(guān)鍵是利用待定系數(shù)法,利用矩陣的乘法公式,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)選修4-2:矩陣與變換
          若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為e1=
          1
          0
          e2=
          0
          1

          (I)求矩陣A;
          (II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知曲線C1的參數(shù)方程為
          x=2sinθ
          y=cosθ
          為參數(shù)),C2的參數(shù)方程為
          x=2t
          y=t+1
          (t
          為參數(shù))
          (I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
          (II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
          (3)選修4-5:不等式選講
          設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
          (I)求關(guān)于x的不等式f(x)≤5的解集;
          (II)若g(x)=
          1
          f(x)+m
          的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分
          (1)選修4-2:矩陣與變換
          變換T是將平面上每個(gè)點(diǎn)M(x,y)的橫坐標(biāo)乘2,縱坐標(biāo)乘4,變到點(diǎn)M′(2x,4y).
          (Ⅰ)求變換T的矩陣;
          (Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知極點(diǎn)與原點(diǎn)重合,極軸與x軸的正半軸重合.若曲線C1的極坐標(biāo)方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數(shù)方程為:
          x=1-
          3
          t
          y=t
          (t為參數(shù)).
          (Ⅰ)求曲線C1的直角坐標(biāo)方程;
          (Ⅱ)直線?上有一定點(diǎn)P(1,0),曲線C1與?交于M,N兩點(diǎn),求|PM|.|PN|的值.
          (3)選修4-5:不等式選講
          已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+
          1
          4
          b2+
          1
          9
          c2
          +m-1=0.
          (Ⅰ)求證:a2+
          1
          4
          b2+
          1
          9
          c2
          (a+b+c)2
          14

          (Ⅱ)求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三第八次月考理科數(shù)學(xué)試卷 題型:解答題

          本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題做答,滿分14分

          (1)(本小題滿分7分)選修4-2:矩陣與變換

          變換是將平面上每個(gè)點(diǎn)的橫坐標(biāo)乘,縱坐標(biāo)乘,變到點(diǎn).

          (Ⅰ)求變換的矩陣;

          (Ⅱ)圓在變換的作用下變成了什么圖形?

          (2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

          已知極點(diǎn)與原點(diǎn)重合,極軸與x軸的正半軸重合.若曲線的極坐標(biāo)方程為:,直線的參數(shù)方程為:為參數(shù)).

          (Ⅰ)求曲線的直角坐標(biāo)方程;

          (Ⅱ)直線上有一定點(diǎn),曲線交于M,N兩點(diǎn),求的值.

          (3)(本小題滿分7分)選修4-5:不等式選講

           已知為實(shí)數(shù),且

          (Ⅰ)求證:

          (Ⅱ)求實(shí)數(shù)m的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省福州三中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          (1)選修4-2:矩陣與變換
          若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為
          (I)求矩陣A;
          (II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知曲線C1的參數(shù)方程為為參數(shù)),C2的參數(shù)方程為為參數(shù))
          (I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
          (II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
          (3)選修4-5:不等式選講
          設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
          (I)求關(guān)于x的不等式f(x)≤5的解集;
          (II)若的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:福建省龍巖一中2011-2012學(xué)年高三下學(xué)期第八次月考試卷數(shù)學(xué)(理) 題型:解答題

           本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題做答,滿分14分

          (1)選修4-2:矩陣與變換

          變換是將平面上每個(gè)點(diǎn)的橫坐標(biāo)乘,縱坐標(biāo)乘,變到點(diǎn).

          (Ⅰ)求變換的矩陣;

          (Ⅱ)圓在變換的作用下變成了什么圖形?

          (2)選修4-4:坐標(biāo)系與參數(shù)方程

          已知極點(diǎn)與原點(diǎn)重合,極軸與x軸的正半軸重合.若曲線的極坐標(biāo)方程為:,直線的參數(shù)方程為:為參數(shù)).

          (Ⅰ)求曲線的直角坐標(biāo)方程;

          (Ⅱ)直線上有一定點(diǎn),曲線交于M,N兩點(diǎn),求的值.

          (3)選修4-5:不等式選講

           已知為實(shí)數(shù),且

          (Ⅰ)求證:

          (Ⅱ)求實(shí)數(shù)m的取值范圍.

           

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案