日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax2-2ax+2+b(a>0),在區(qū)間[2,3]上有最大值5,最小值2.
          (1)求a,b的值.
          (2)若g(x)=f(x)-|m-1|x在[2,3]上單調(diào),求實(shí)數(shù)m的取值范圍.
          分析:(1)依題意可得到關(guān)于a,b的方程組
          9a-6a+2+b=5
          4a-4a+2+b=2
          ,解之即可;
          (2)由(1)可得f(x)的解析式,從而可得g(x)的解析式,利用二次函數(shù)的單調(diào)性即可求得實(shí)數(shù)m的取值范圍.
          解答:解:(1)f(x)=a(x-1)2+2+b-a的對(duì)稱軸方程為x=1,又a>0,所以f(x)在[2,3]上為增函數(shù),
          f(3)=2
          f(2)=5
          ,即
          9a-6a+2+b=5
          4a-4a+2+b=2
          ,
          解得:
          a=1
          b=0

          (2)由(1)得f(x)=x2-2x+2,
          ∴g(x)=x2-2x+2-|m-1|x
          =x2-(2+|m-1|)x+2,
          ∵g(x)=x2-(2+|m-1|)x+2在[2,3]上單調(diào),
          2+|m-1|
          2
          ≤2,或
          2+|m-1|
          2
          ≥3,
          ∴|m-1|≤2或|m-1|≥6,
          即m≤-5,或-1≤m≤3,或m≥7.
          點(diǎn)評(píng):本題考查二次函數(shù)在閉區(qū)間上的最值,考查解方程組與不等式組的能力,考查二次函數(shù)的單調(diào)性與最值及分類討論思想、方程思想的綜合應(yīng)用,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時(shí),求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案