日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知{an}是遞減等比數(shù)列,a2=2,a1+a3=5,則a1a2+a2a3+…+anan+1(n∈N*)的取值范圍是( 。
          A、[12,16)
          B、[8,16)
          C、[8,
          32
          3
          )
          D、[
          16
          3
          ,
          32
          3
          )
          分析:先根據(jù)等比中項(xiàng)性質(zhì)可知(a22=a1•a3=4,進(jìn)而根據(jù)a1+a3=5求得a1和a3,進(jìn)而根據(jù)q2=
          a3
          a1
          求得q.根據(jù)a1a2+a2a3+…+anan+1是數(shù)列{anan+1}的前n項(xiàng)和,且數(shù)列{anan+1}是以8為首項(xiàng),
          1
          4
          為公比的等比數(shù)列.進(jìn)而可得前n項(xiàng)和的表達(dá)式為Sn=
          32
          3
          (1-
          1
          22n-2
          ),可知Sn
          32
          3
          ,由已知{an}是遞減等比數(shù)列可知{Sn}的最大項(xiàng)為S1,進(jìn)而得到答案.
          解答:解:(a22=a1•a3=4,a1+a3=5,
          ∴a1和a3是方程x2-5x+4=0的兩個(gè)根,解得x=1或4
          ∵{an}是遞減等比數(shù)列,∴a1>a3,
          ∴a1=4,a3=1
          ∴q2=
          a3
          a1
          =
          1
          4

          ∵{an}是遞減等比數(shù)列,∴q>0
          ∴q=
          1
          2

          ∴Sn=a1a2+a2a3+…+anan+1=a12q+a12q3+a12q5…+a12q2n-1=
          8[1-(
          1
          4
          )n]
          1-
          1
          4
          =
          32
          3
          (1-
          1
          4n
          )<
          32
          3

          ∵{an}是遞減等比數(shù)列,
          ∴{Sn}的最小項(xiàng)為S1=8
          ∴a1a2+a2a3+…+anan+1(n∈N*)的取值范圍是[8,
          32
          3
          )

          故選C
          點(diǎn)評(píng):本題主要考查了等比數(shù)列的性質(zhì).?dāng)?shù)列內(nèi)容高考必考內(nèi)容之一,選擇題主要考查等差、等比數(shù)列的性質(zhì)(尤其是中項(xiàng)公式)、定義,以及前n項(xiàng)和Sn的簡(jiǎn)單應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•溫州一模)已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:單選題

          已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的


          1. A.
            充分不必要條件
          2. B.
            必要不充分條件
          3. C.
            充要條件
          4. D.
            既不充分也不必要條件

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:溫州一模 題型:單選題

          已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的( 。
          A.充分不必要條件B.必要不充分條件
          C.充要條件D.既不充分也不必要條件

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省溫州市八校聯(lián)考高三(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

          已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的( )
          A.充分不必要條件
          B.必要不充分條件
          C.充要條件
          D.既不充分也不必要條件

          查看答案和解析>>

          同步練習(xí)冊(cè)答案