日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 回答下列問題:

          (1)若θ角的終邊與α角的終邊關(guān)于x軸對稱,則θα________;

          (2)若θ角的終邊與α角的終邊關(guān)于y軸對稱,則θα________;

          (3)若θ角的終邊與α角的終邊關(guān)于原點(diǎn)對稱,則θα________;

          (4)若θ角的終邊與α角的終邊關(guān)于直線y=x對稱,則θα________;

          (5)若θ角的終邊與α角的終邊互相垂直,則θα_________;

          (6)若θ角的終邊上有一點(diǎn)P(a,b),且θ角與α角的終邊關(guān)于y=-x對稱,則α角的終邊必過非原點(diǎn)的點(diǎn)Q的坐標(biāo)是________;

          (7)終邊落在x軸負(fù)半軸的角α的集合為________;

          (8)終邊在一、三象限的角平分線上的角β的集合是_________.

          答案:略
          解析:

          解:如圖(1),∵,,(|AOC||BOC|0°~360°間)

          ,而∠BOC=-∠AOC

          ∴∠AOC+∠BOC=0°且.∴θα=k·360°(kÎ Z)

          (2)如圖(2),OAOB關(guān)于y軸對稱,設(shè)∠AOC與∠BOC0°~360°間,則,,

          ,而∠AOC=BOD,∠BOC+∠BOD=180°.

          又∵,

          αθ=(2k1)180°(kÎ Z)

          (3)是終邊一條直線上的兩個(gè)角,仿照(1)(2)的證明可以得到θα=(2k1)180°(kÎ Z)

          (4)仿照(1)、(2)的證明,可以得到αθ=k·360°+90°(kÎ Z)

          (5)θα=k·360°+90°或θα=k·360°-90°(kÎ Z)

          (6)如圖(3),點(diǎn)Q與點(diǎn)P(ab)關(guān)于直線y=x對稱.

          依題意得,Q(|OB|,|QB|),而|OB|=|OA|=b|QB|=|PA|=a,

          ∴點(diǎn)Q的坐標(biāo)為(b,-a)

          (7){α|α=180°+k·360°,kÎ Z}={α|α=(2k1)·180°,kÎ Z}

          (8){β|β=45°+k·180°kÎ Z}

          評注:在解題時(shí)注意運(yùn)用數(shù)形結(jié)合法.


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          為了考察某校的教學(xué)水平,將抽查這個(gè)學(xué)校高三年級的部分學(xué)生的本學(xué)年考試成績進(jìn)行考察.為了全面地反映實(shí)際情況,采取以下三種方式進(jìn)行(已知該校高三年級共有14個(gè)教學(xué)班,并且每個(gè)班內(nèi)的學(xué)生都已經(jīng)按隨機(jī)方式編好了學(xué)號,假定該校每班人數(shù)都相同).

          ①從全年級14個(gè)班中任意抽取一個(gè)班,再從該班中任意抽取14人,考察他們的學(xué)習(xí)成績;②每個(gè)班都抽取1人,共計(jì)14人,考察這14個(gè)學(xué)生的成績;③把學(xué)校高三年級的學(xué)生按成績分成優(yōu)秀、良好、普通三個(gè)級別,從中抽取100名學(xué)生進(jìn)行考查(已知若按成績分,該校高三學(xué)生中優(yōu)秀學(xué)生有105名,良好學(xué)生有420名,普通學(xué)生有175名).根據(jù)上面的敘述,試回答下列問題:

          (1)上面三種抽取方式中,其總體、個(gè)體、樣本分別指什么?每一種抽取方式抽取的樣本中,其樣本容量分別是多少?

          (2)上面三種抽取方式各自采用何種抽取樣本的方法?

          (3)試分別寫出上面三種抽取方式各自抽取樣本的步驟.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年重慶市西南師大附中高三下學(xué)期五月月考數(shù)學(xué)(理) 題型:解答題

          (本小題滿分12分)
          古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n)個(gè)圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.

          現(xiàn)用an表示將n個(gè)圓盤全部從A柱上移到C柱上所至少需要移動的次數(shù),回答下列問題:
          (1)   寫出a1,a2,a3,并求出an;
          (2)   記,求和);
          (其中表示所有的積的和)
          (3)   證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修1單調(diào)性與最大(。┲稻毩(xí)卷(二)(解析版) 題型:填空題

          下圖表示某市2008年6月份某一天的氣溫隨時(shí)間變化的情況,請觀察此圖回答下列問題:

          (1)這天的最高氣溫是__________;

          (2)這天共有______個(gè)小時(shí)的氣溫在31 ℃以上;

          (3)這天在______(時(shí)間)范圍內(nèi)溫度在上升;

          (4)請你預(yù)測一下,次日凌晨1點(diǎn)的氣溫大約在______內(nèi).

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆遼寧省高一第三次月考考試數(shù)學(xué) 題型:解答題

          (12分)如圖所示,以AB=4 cm,BC=3 cm的長方形ABCD為底面的長方體被平面斜著截?cái)嗟膸缀误w,EFGH是它的截面.當(dāng)AE=5 cm,BF=8 cm,CG=12 cm時(shí),試回答下列問題:

           

           

           

          (1)求DH的長;

          (2)求這個(gè)幾何體的體積;

          (3)截面四邊形EFGH是什么圖形?證明你的結(jié)論.

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年重慶市高三下學(xué)期五月月考數(shù)學(xué)(理) 題型:解答題

          1.    (本小題滿分12分)

          古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n)個(gè)圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.

          現(xiàn)用an表示將n個(gè)圓盤全部從A柱上移到C柱上所至少需要移動的次數(shù),回答下列問題:

          (1)    寫出a1,a2,a3,并求出an;

          (2)    記,求和);

          (其中表示所有的積的和)

          (3)    證明:

           

          查看答案和解析>>

          同步練習(xí)冊答案