日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 本題有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分
          (1)二階矩陣M對(duì)應(yīng)的變換將向量,分別變換成向量,,直線l在M的變換下所得到的直線l′的方程是2x-y-1=0,求直線l的方程.
          (2)過點(diǎn)P(-3,0)且傾斜角為30°的直線l和曲線C:(s為參數(shù))相交于A,B兩點(diǎn),求線段AB的長(zhǎng).
          (3)若不等式|a-1|≥x+2y+2z,對(duì)滿足x2+y2+z2=1的一切實(shí)數(shù)x,y,z恒成立,求實(shí)數(shù)a的取值范圍.
          【答案】分析:(1)設(shè)出二階矩陣M,由矩陣的乘法得到關(guān)于a、b、c、d的方程組,解方程組可求出M.再設(shè)點(diǎn)P(x,y)是直線l上任一點(diǎn),在M變換下對(duì)應(yīng)的點(diǎn)為P′(x,y),由矩陣的乘法得到x、y、x、y之間的關(guān)系,用x、y表示出x、y,代入已知直線方程即可.
          (2)消去s得x與y的方程,與直線方程聯(lián)立,由弦長(zhǎng)公式求弦長(zhǎng)即可.
          (3)不等式|a-1|≥x+2y+2z恒成立,只要|a-1|≥(x+2y+2z)max,利用柯西不等式9=(12+22+22)•(x2+y2+z2)≥(1•x+2•y+2•z)2
          求出x+2y+2z的最大值,再解關(guān)于a的絕對(duì)值不等式即可.
          解答:解:(1)設(shè),則由題知=,=
          所以,解得,所以M=
          設(shè)點(diǎn)P(x,y)是直線l上任一點(diǎn),在M變換下對(duì)應(yīng)的點(diǎn)為P′(x,y),
          那么=
          因?yàn)?x-y-1=0,∴2(-x-4y)-(3x+5y)-1=0 即5x+13y+1=0,
          因此直線l的方程是5x+13y+1=0.
          (2)由已知,直線的參數(shù)方程為t為參數(shù)),
          曲線s為參數(shù))可以化為x2-y2=4.
          將直線的參數(shù)方程代入上式,得
          設(shè)A,B對(duì)應(yīng)的參數(shù)分別為t1,t2,∴t1+t2=,t1t2=10.
          ∴AB=|t1-t2|=
          (3)由柯西不等式9=(12+22+22)•(x2+y2+z2)≥(1•x+2•y+2•z)2
          即x+2y+2z≤3,當(dāng)且僅當(dāng)
          ,時(shí),x+2y+2z取得最大值3.
          ∵不等式|a-1|≥x+2y+2z,對(duì)滿足x2+y2+z2=1的一切實(shí)數(shù)x,y,z恒成立,
          只需|a-1|≥3,解得a-1≥3或a-1≤-3,∴a≥4或∴a≤-2.
          即實(shí)數(shù)的取值范圍是(-∞,-2]∪[4,+∞).
          點(diǎn)評(píng):本題考查矩陣變換、參數(shù)方程和柯西不等式的應(yīng)用,考查運(yùn)算能力和運(yùn)用所學(xué)知識(shí)解決問題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個(gè)選答題,請(qǐng)考生任選2題作答.
          (1)選修4-2:矩陣與變換
          已知a,b∈R,若M=
          -1a
          b3
          所對(duì)應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實(shí)數(shù)a,b,并求M的逆矩陣.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知直線l的參數(shù)方程:
          x=t
          y=1+2t
          (t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2
          2
          sin(θ+
          π
          4
          )

          ①將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
          ②判斷直線l和圓C的位置關(guān)系.
          (3)選修4-5:不等式選講
          已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實(shí)數(shù)x的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個(gè)選擇題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
          (1).選修4-2:矩陣與變換
          已知矩陣A=
          1a
          -1b
          ,A的一個(gè)特征值λ=2,其對(duì)應(yīng)的特征向量是α1=
          2
          1

          (Ⅰ)求矩陣A;
          (Ⅱ)若向量β=
          7
          4
          ,計(jì)算A2β的值.

          (2).選修4-4:坐標(biāo)系與參數(shù)方程
          已知橢圓C的極坐標(biāo)方程為ρ2=
          12
          3cos2θ+4sin2θ
          ,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為
          x=2+
          2
          2
          t
          y=
          2
          2
          t
          (t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
          (3).選修4-5:不等式選講
          已知x,y,z均為正數(shù).求證:
          x
          yz
          +
          y
          zx
          +
          z
          xy
          1
          x
          +
          1
          y
          +
          1
          z

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
          (1)選修4-2:矩陣與變換
          已知矩陣A=
          12
          34

          ①求矩陣A的逆矩陣B;
          ②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為
          x=1+2cosα
          y=-1+2sinα
          (a為參數(shù)),點(diǎn)Q極坐標(biāo)為(2,
          7
          4
          π).
          (Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
          (Ⅱ)若點(diǎn)P是圓C上的任意一點(diǎn),求P、Q兩點(diǎn)距離的最小值.
          (3)選修4-5:不等式選講
          (I)關(guān)于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
          (II)設(shè)x,y,z∈R,且
          x2
          16
          +
          y2
          5
          +
          z2
          4
          =1
          ,求x+y+z的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
          (Ⅰ)選修4-2:矩陣與變換,
          已知矩陣A=
          01
          a0
          ,矩陣B=
          02
          b0
          ,直線l1
          :x-y+4=0經(jīng)矩陣A所對(duì)應(yīng)的變換得直線l2,直線l2又經(jīng)矩陣B所對(duì)應(yīng)的變換得到直線l3:x+y+4=0,求直線l2的方程.
          (Ⅱ)選修4-4:坐標(biāo)系與參數(shù)方程,
          求直線
          x=-2+2t
          y=-2t
          被曲線
          x=1+4cosθ
          y=-1+4sinθ
          截得的弦長(zhǎng).
          (Ⅲ)選修4-5:不等式選講,解不等式|x+1|+|2x-4|>6.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分
          (1)已知矩陣M=
          12
          21
          ,β=
          1
          7
          ,(Ⅰ)求M-1;(Ⅱ)求矩陣M的特征值和對(duì)應(yīng)的特征向量;(Ⅲ)計(jì)算M100β.
          (2)曲線C的極坐標(biāo)方程是ρ=1+cosθ,點(diǎn)A的極坐標(biāo)是(2,0),求曲線C在它所在的平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)一周而形成的圖形的周長(zhǎng).
          (3)已知a>0,求證:
          a2+
          1
          a2
          -
          2
          ≥a+
          1
          a
          -2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案