日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=
          x2+bx+c(x≤0)
          2(x>0)
          ,若f(-2)=f(0),f(-1)=-3,則關(guān)于x的方程f(x)=x的解的個數(shù)是(  )
          A、1B、2C、3D、4
          分析:先求出函數(shù)f(x)的解析式,然后將方程f(x)=x的解的個數(shù),轉(zhuǎn)化成利用圖象求兩個函數(shù)圖象的交點(diǎn)個數(shù)問題,作出函數(shù)y=f(x)與y=x的圖象,從而得到結(jié)論.
          解答:解:∵函數(shù)f(x)=
          x2+bx+c(x≤0)
          2(x>0)
          ,f(-2)=f(0),f(-1)=-3,精英家教網(wǎng)
          4-2b+c=c
          1-b+c=-3
          ,解得
          b=2
          c=-2
          ,
          ∴f(x)=
          x2+2x-2(x≤0)
          2(x>0)
          ,
          關(guān)于x的方程f(x)=x的解的個數(shù)即為y=f(x)與y=x交點(diǎn)的個數(shù),
          作出函數(shù)y=f(x)與y=x的圖象如右圖
          ∴根據(jù)圖象可知有2個交點(diǎn),則方程f(x)=x的解的個數(shù)是2.
          故選:B.
          點(diǎn)評:本題考查了分段函數(shù)的圖象,函數(shù)的零點(diǎn)與方程的關(guān)系,對于函數(shù)的零點(diǎn),一般會轉(zhuǎn)化成方程的根,或是利用圖象轉(zhuǎn)化成兩個函數(shù)的交點(diǎn)問題.對于分段函數(shù)的問題,一般選用分類討論和數(shù)形結(jié)合的思想方法進(jìn)行求解,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          當(dāng)p1,p2,…,pn均為正數(shù)時,稱
          n
          p1+p2+…+pn
          為p1,p2,…,pn的“均倒數(shù)”.已知數(shù)列{an}的各項均為正數(shù),且其前n項的“均倒數(shù)”為
          1
          2n+1

          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)cn=
          an
          2n+1
          (n∈N*),試比較cn+1與cn的大小;
          (3)設(shè)函數(shù)f(x)=-x2+4x-
          an
          2n+1
          ,是否存在最大的實數(shù)λ,使當(dāng)x≤λ時,對于一切正整數(shù)n,都有f(x)≤0恒成立?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          x2+bx+c,(x<0)
          -x+3,(x≥0)
          ,且f(-4)=f(0),f(-2)=-1.
          (1)求函數(shù)f(x)的解析式; 
          (2)畫出函數(shù)f(x)的圖象,并指出函數(shù)f(x)的單調(diào)區(qū)間.
          (3)若方程f(x)=k有兩個不等的實數(shù)根,求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知△ABC中,角A,B,C所對邊長分別是a,b,c,設(shè)函數(shù)f(x)=x2+bx-
          1
          4
          為偶函數(shù),且f(cos
          B
          2
          )=0

          (1)求角B的大小;
          (2)若△ABC的面積為
          3
          4
          ,其外接圓的半徑為
          2
          3
          3
          ,求△ABC的周長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          x2+bx+c,-4≤x<0
          -x+3,0≤x≤4
          ,且f(-4)=f(0),f(-2)=-1.
          (1)求函數(shù)f(x)的解析式;
          (2)畫出函數(shù)f(x)的圖象,并寫出函數(shù)f(x)的定義域、值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          x2-x+n
          x2+x+1
          (x∈R,x≠
          n-1
          2
          ,x∈N*)
          ,f(x)的最小值為an,最大值為bn,記cn=(1-an)(1-bn
          則數(shù)列{cn}是
          常數(shù)
          常數(shù)
          數(shù)列.(填等比、等差、常數(shù)或其他沒有規(guī)律)

          查看答案和解析>>

          同步練習(xí)冊答案