日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y2=4x,橢圓
          x2
          9
          +
          y2
          m
          =1有共同的焦點F2

          求:(1)求m值
          (2)求以F2為焦點,實軸長與虛軸長相等的雙曲線方程.
          分析:(1)拋物線y2=4x的焦點為(1,0)即c=1,再利用橢圓定義,求出2a,得出a,可求得m的值;
          (2)雙曲線中由(1)求得c,再根據(jù)實軸長與虛軸長相等,可求得方程.
          解答:解:(1)拋物線y2=4x的焦點,橢圓的右焦點F2(1,0),
          ∴c=1
          ∴9-m=12⇒m=8.
          (2)∵F2(1,0),實軸長與虛軸長相等,
          由2a12=c2=1得a12=
          1
          2
          ,
          所求雙曲線的方程為 x2-y2=
          1
          2
          點評:本題主要考查了圓錐曲線的共同特征.考查了學(xué)生對圓錐曲線知識的綜合把握.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線y2=4x的焦點為F,其準(zhǔn)線與x軸交于點M,過M作斜率為k的直線與拋物線交于A、B兩點,弦AB的中點為P,AB的垂直平分線與x軸交于點E(x0,0).
          (1)求k的取值范圍;
          (2)求證:x0>3;
          (3)△PEF能否成為以EF為底的等腰三角形?若能,求此k的值;若不能,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線
          y
          2
           
          =4x
          的焦點為F,過點A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為
          x-2y+4=0
          x-2y+4=0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線y2=4x,焦點為F,頂點為O,點P(m,n)在拋物線上移動,Q是OP的中點,M是FQ的中點.
          (1)求點M的軌跡方程.
          (2)求
          nm+3
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線y2=4x與直線2x+y-4=0相交于A、B兩點,拋物線的焦點為F,那么|
          FA
          |+|
          FB
          |
          =
          7
          7

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線y2=4x,其焦點為F,P是拋物線上一點,定點A(6,3),則|PA|+|PF|的最小值是
          7
          7

          查看答案和解析>>

          同步練習(xí)冊答案