日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若實數(shù)a>0且a≠2,函數(shù)f(x)=
          1
          3
          ax3-
          1
          2
          (a+2)x2+2x+1

          (1)若a>2,求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)若在區(qū)間(0,+∞)上存在一點(diǎn)x0,使得f(x0)<1成立,求實數(shù)a的取值范圍.
          (1)∵f(x)=
          1
          3
          ax3-
          1
          2
          (a+1)x2
          +2x+1
          f′(x)=ax2-(a+2)x+2=a(x-1)(x-
          2
          a
          )
          …(2分)a>2時,列表如下,
          x (-∞,
          2
          a
          )
          2
          a
          (
          2
          a
          ,1)
          1 (1,+∞)
          f'(x) + 0 - 0 +
          f(x) 極大值 極小值
          函數(shù)在x=1處取極值,f(x)的單調(diào)遞增區(qū)間是(-∞,
          2
          a
          )和(1,+∞)

          單調(diào)遞減區(qū)間是(
          2
          a
          ,1)
          …(6分)
          當(dāng)0<a<2時,列表如下,
          x (-∞,1) 1 (1,
          2
          a
          )
          2
          a
          (
          1
          a
          ,+∞)
          f'(x) + 0 - 0 +
          f(x) 極大值 極小值
          函數(shù)f(x)在x=1處取極值,h(x)的單調(diào)遞增區(qū)間是(-∞,1)和(
          2
          a
          ,+∞)

          單調(diào)遞減區(qū)間是(1,
          2
          a
          )
          …(6分)
          (2)因為f(0)=1,由(1)知要使在區(qū)間(0,+∞)上至少存在一點(diǎn)x0,使得f(x0)<1成立,只需在區(qū)間(0,+∞)上f(x)極小值<1即可.…(8分)
          當(dāng)a>2時,f(x)極小值=f(1)=2-
          a
          6
          <1,所以a>6.…(10分)
          當(dāng)0<a<2時,f(x)極小值=f(
          2
          a
          )=1+
          2(3a-2)
          3a2
          <1恒成立,所以0<a<
          2
          3
          .…(12分)
          綜上所述,實數(shù)a的取值范圍為(0,
          2
          3
          )∪(6,+∞)
          …(13分)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若實數(shù)a>0且a≠2,函數(shù)f(x)=
          1
          3
          ax3-
          1
          2
          (a+2)x2+2x+1.
          (1)證明函數(shù)f(x)在x=1處取得極值,并求出函數(shù)f(x)的單調(diào)區(qū)間;
          (2)若在區(qū)間(0,+∞)上至少存在一點(diǎn)x0,使得f(x0)<1成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若實數(shù)a>0且a≠2,函數(shù)f(x)=
          1
          3
          ax3-
          1
          2
          (a+2)x2+2x+1

          (1)若a>2,求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)若在區(qū)間(0,+∞)上存在一點(diǎn)x0,使得f(x0)<1成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          若實數(shù)a>0且a≠2,函數(shù)f(x)=數(shù)學(xué)公式ax3-數(shù)學(xué)公式(a+2)x2+2x+1.
          (1)證明函數(shù)f(x)在x=1處取得極值,并求出函數(shù)f(x)的單調(diào)區(qū)間;
          (2)若在區(qū)間(0,+∞)上至少存在一點(diǎn)x0,使得f(x0)<1成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省寧波市八校聯(lián)考高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          若實數(shù)a>0且a≠2,函數(shù)f(x)=ax3-(a+2)x2+2x+1.
          (1)證明函數(shù)f(x)在x=1處取得極值,并求出函數(shù)f(x)的單調(diào)區(qū)間;
          (2)若在區(qū)間(0,+∞)上至少存在一點(diǎn)x,使得f(x)<1成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案