日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足
          (I)求角B的大;
          (II)若b是a和c的等比中項,求△ABC的面積.
          【答案】分析:(I)題設(shè)利用兩角和公式整理等式求得sin(B+)的值,進而求得B.
          (II)根據(jù)等比中項性質(zhì)可求得b2=ac,代入余弦定理中求得a與c的值,進而可推斷出三角形為正三角形,進而求得三角形的面積.
          解答:解:(I)由,
          ,
          由B∈(0,π)得,故

          (II)由b是a和c的等比中項得b2=ac
          又由余弦定理得b2=a2+c2-2ac•cosB=a2+c2-2ac•cos=a2+c2-ac,
          故ac=a2+c2-ac,得(a-c)2=0,得a=c=1,
          ∴b==1
          故△ABC為正三角形

          點評:本題主要考查了余弦定理的應(yīng)用,兩角和公式的化簡求值.考查了學生對基礎(chǔ)知識點綜合運用.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
          3
          bc
          ,且b=
          3
          a
          ,則下列關(guān)系一定不成立的是( 。
          A、a=c
          B、b=c
          C、2a=c
          D、a2+b2=c2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
          1114

          (1)求cosC的值;
          (2)若bcosC+acosB=5,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
          3
          acosB

          (1)求角B的大;
          (2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
          b
          a
          =
          sinB
          cosA

          (1)求∠A的值;
          (2)求用角B表示
          2
          sinB-cosC
          ,并求它的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
          5
          ,b=3,sinC=2sinA
          ,則sinA=
           

          查看答案和解析>>

          同步練習冊答案