日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=x2-2tx+4t3+t2-3t+3,其中x∈R,t∈R,將f(x)的最小值記為g(t).
          (1)求g(t)的表達(dá)式;
          (2)討論g(t)在區(qū)間[-1,1]內(nèi)的單調(diào)性;
          (3)若當(dāng)t∈[-1,1]時(shí),|g(t)|≤k恒成立,其中k為正數(shù),求k的取值范圍.
          (1)根據(jù)題意得f′(x)=2x-2t=0得x=t,當(dāng)x<t時(shí),f′(x)<0,函數(shù)為減函數(shù);當(dāng)x>t時(shí),f′(x)>0,函數(shù)為減函數(shù).則f(x)的最小值g(t)=f(t)=4t3-3t+3;
          (2)求出g′(t)=12t2-3=0解得t=±
          1
          2
          ,
          當(dāng)-1≤t<-
          1
          2
          1
          2
          ≤t≤1時(shí),g′(t)>0,函數(shù)為增函數(shù);
          當(dāng)-
          1
          2
          ≤t≤
          1
          2
          時(shí),g′(t)<0,函數(shù)為減函數(shù).所以函數(shù)的遞增區(qū)間為[-1,-
          1
          2
          ]與[
          1
          2
          ,1],遞減區(qū)間為[-
          1
          2
          ,
          1
          2
          );
          (3)由(2)知g(t)的遞增區(qū)間為[-1,-
          1
          2
          ]與[
          1
          2
          ,1],遞減區(qū)間為[-
          1
          2
          ,
          1
          2
          );
          又g(1)=4,g(-
          1
          2
          )=4
          ∴函數(shù)g(t)的最大值為4,
          則g(t)≤4.
          ∵當(dāng)t∈[-1,1]時(shí),|g(t)|≤k恒成立,
          ∴k≥4
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
          (1)判斷函數(shù)f(x)的奇偶性;
          (2)求函數(shù)f(x)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,則實(shí)數(shù)a的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
          1x+1
          ).
          (1)討論f(x)的單調(diào)性.
          (2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
          (1)若曲線y=f(x)在x=1處的切線為y=x,求實(shí)數(shù)m的值;
          (2)當(dāng)m=2時(shí),若方程f(x)-h(x)=0在[1,3]上恰好有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
          (3)是否存在實(shí)數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
          (1)若a=-6,求f(x)在[0,3]上的最值;
          (2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
          (3)求證:不等式ln
          n+1
          n
          n-1
          n3
          (n∈N*)恒成立.

          查看答案和解析>>

          同步練習(xí)冊答案