日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)數(shù)列{an}各項(xiàng)為正數(shù),且a2=4a1 , an+1= +2an(n∈N*
          (I)證明:數(shù)列{log3(1+an)}為等比數(shù)列;
          (Ⅱ)令bn=log3(1+a2n1),數(shù)列{bn}的前n項(xiàng)和為Tn , 求使Tn>345成立時(shí)n的最小值.

          【答案】(I)證明:∵a2=4a1 , an+1= +2an(n∈N*),∴a2=4a1 , a2= ,解得a1=2,a2=8.
          ∴an+1+1= +2an+1=
          兩邊取對(duì)數(shù)可得:log3(1+an+1)=2log3(1+an),
          ∴數(shù)列{log3(1+an)}為等比數(shù)列,首項(xiàng)為1,公比為2.
          (II)解:由(I)可得:log3(1+an)=2n1 ,
          ∴bn=log3(1+a2n1)=22n2=4n1 ,
          ∴數(shù)列{bn}的前n項(xiàng)和為Tn= =
          不等式Tn>345,
          化為 >345,即4n>1036.
          解得n>5.
          ∴使Tn>345成立時(shí)n的最小值為6
          【解析】(I)由a2=4a1 , an+1= +2an(n∈N*),可得a2=4a1 , a2= ,解得a1 , a2 . 由于an+1+1= +2an+1= ,兩邊取對(duì)數(shù)可得:log3(1+an+1)=2log3(1+an),即可證明.(II)由(I)可得:log3(1+an)=2n1 , 可得bn=log3(1+a2n1)=22n2=4n1 , 可得數(shù)列{bn}的前n項(xiàng)和為Tn , 代入化簡(jiǎn)即可得出.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列四個(gè)函數(shù)中,在定義域上不是單調(diào)函數(shù)的是(
          A.y=﹣2x+1
          B.y=
          C.y=lgx
          D.y=x3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}滿足:a1=1,an= ,n=2,3,4,….
          (1)求a2 , a3 , a4 , a5的值;
          (2)設(shè)bn= +1,n∈N*,求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)公式;
          (3)對(duì)任意的m≥2,m∈N*,在數(shù)列{an}中是否存在連續(xù)的2m項(xiàng)構(gòu)成等差數(shù)列?若存在,寫出這2m項(xiàng),并證明這2m項(xiàng)構(gòu)成等差數(shù)列;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足 ,若n∈N*時(shí),anbn+1﹣bn+1=nbn
          (Ⅰ)求{bn}的通項(xiàng)公式;
          (Ⅱ)設(shè)cn=anbn , 求{cn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,A1 , A2為橢圓 =1的長(zhǎng)軸的左、右端點(diǎn),O為坐標(biāo)原點(diǎn),S,Q,T為橢圓上不同于A1 , A2的三點(diǎn),直線QA1 , QA2 , OS,OT圍成一個(gè)平行四邊形OPQR,則|OS|2+|OT|2=(

          A.5
          B.3+
          C.9
          D.14

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知復(fù)數(shù)z=x+yi(x,y∈R)滿足 ,則y≥x﹣1的概率為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解市民在購(gòu)買食物時(shí)看營(yíng)養(yǎng)說(shuō)明與性別的關(guān)系,現(xiàn)在社會(huì)上隨機(jī)詢問(wèn)了100名市民,得到如下2×2列聯(lián)表:
          (1)是否有95%的把握認(rèn)為:“性別與讀營(yíng)養(yǎng)說(shuō)明有關(guān)系”,并說(shuō)明理由;
          (2)把頻率當(dāng)概率,若從社會(huì)上的男性市民中隨機(jī)抽取3位,記這3位中讀營(yíng)養(yǎng)說(shuō)明的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).

          男性

          女性

          總計(jì)

          讀營(yíng)養(yǎng)說(shuō)明

          40

          20

          60

          不讀營(yíng)養(yǎng)說(shuō)明

          20

          20

          40

          總計(jì)

          60

          40

          100

          參考公式和數(shù)據(jù):

          P(K2≥k0

          0.10

          0.050

          0.025

          0.010

          k0

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,F(xiàn)1 , F2分別是橢圓C: =1(a>b>0)的左、右焦點(diǎn),且焦距為2 ,動(dòng)弦AB平行于x軸,且|F1A|+|F1B|=4.

          (1)求橢圓C的方程;
          (2)若點(diǎn)P是橢圓C上異于點(diǎn) 、A,B的任意一點(diǎn),且直線PA、PB分別與y軸交于點(diǎn)M、N,若MF2、NF2的斜率分別為k1、k2 , 求證:k1k2是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(2015·江蘇)已知集合X={1,2,3},Yn={1,2,3...,n}(nN*),Sn={(a,b)|a整除b或b整除a, aX, bYn}, 令f(n)表示集合Sn所包含元素的個(gè)數(shù)。
          (1)寫出f(6)的值;
          (2)當(dāng)n≥6時(shí),寫出f(n)的表達(dá)式,并用數(shù)學(xué)歸納法證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案