日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.     定義在(1,1)上的函數(shù)f(x)滿足:對任意xy(1,1)都有f(x)+f(y)=

              (1)求證:函數(shù)f(x)是奇函數(shù);

              (2)如果當(dāng)x(1,0)時,有f(x)0,求證:f(x)(1,1)上是單調(diào)遞減函數(shù);

              (3)(2)的條件下解不等式:+0

           

          答案:
          解析:

          答案:(1)證明:令xy=0,則f(0)+f(0)=f(0),故f(0)=0.

              令y=-x,則f(x)+f(-x)==f(0)=0.

              ∴f(-x)=-f(x),

              即函數(shù)f(x)是奇函數(shù).

              (2)證明:設(shè)x1x2∈(-1,1),則

              f(x1)-f(x2)=f(x1)+f(-x2)=.

              ∵x1x2∈(-1,1),

              ∴x2x1>0,-1<x1x2<1.

              因此,∴,即f(x1)>f(x2).

              ∴函數(shù)f(x)在(-1,1)上是減函數(shù).

              (3)解:不等式+>0,化為.

              ∵函數(shù)f(x)在(-1,1)上是減函數(shù),

              ∴

              解得:x<-1.

              ∴原不等式的解集為{x<-1

           


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
          (1)判斷函數(shù)的奇偶性;
          (2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
          (3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)為定義在[-1,1]上的奇函數(shù),當(dāng)x∈[-1,0]時,函數(shù)解析式是f(x)=
          1
          4x
          -
          a
          2x
          (a∈R)

          (1)求f(x)在[-1,1]上的解析表達式;
          (2)求f(x)在[-1,0]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知f(x)為定義在[-1,1]上的奇函數(shù),當(dāng)x∈[-1,0]時,函數(shù)解析式是f(x)=
          1
          4x
          -
          a
          2x
          (a∈R)

          (1)求f(x)在[-1,1]上的解析表達式;
          (2)求f(x)在[-1,0]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:專項題 題型:解答題

          已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若m,n∈[-1,1],m+n≠0時,,
          (Ⅰ)用定義證明:f(x)在[-1,1]上是增函數(shù);
          (Ⅱ)解不等式:
          (Ⅲ)若f(x)≤t2-2at+1對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)t的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年安徽省宣城市涇縣中學(xué)高一(上)12月段考數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
          (1)判斷函數(shù)的奇偶性;
          (2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
          (3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案