日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),,).

          1)判斷曲線在點(diǎn)(1)處的切線與曲線的公共點(diǎn)個(gè)數(shù);

          2)當(dāng)時(shí),若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍

           

          【答案】

          1)當(dāng)△>時(shí),即時(shí),有兩個(gè)公共點(diǎn);

          當(dāng)△=時(shí),即時(shí),有一個(gè)公共點(diǎn);

          當(dāng)△<時(shí),時(shí),沒(méi)有公共點(diǎn) .

          2當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn).

          【解析】

          試題分析:(1)求導(dǎo)數(shù)得切線的斜率,由直線方程的點(diǎn)斜式,得到曲線在點(diǎn)(1)處的切線方程為

          ,利用一元二次方程根的判別式討論得解.

          2)為討論=的零點(diǎn),

          得到,

          因此可令,利用導(dǎo)數(shù)知識(shí),討論起最大值、最小值即得所求.

          試題解析:(1,所以斜率 2

          ,曲線在點(diǎn)(1,)處的切線方程為 3

          4

          由△=可知:

          當(dāng)△>時(shí),即時(shí),有兩個(gè)公共點(diǎn);

          當(dāng)△=時(shí),即時(shí),有一個(gè)公共點(diǎn);

          當(dāng)△<時(shí),時(shí),沒(méi)有公共點(diǎn) 7

          2=

          8

          ,則

          當(dāng),由 10

          所以,上單調(diào)遞減,在上單調(diào)遞增

          因此, 11

          比較可知

          所以,當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn). 14

          考點(diǎn):導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,直線與圓錐曲線的位置關(guān)系,轉(zhuǎn)化與劃歸思想.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時(shí)有極大值6,在x=1時(shí)有極小值,
          (1)求a,b,c的值;
          (2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=2
          3
          a•sinx•cosx•cos2x-6cos22x+3
          ,且f(
          π
          24
          )=0

          (Ⅰ)求函數(shù)f(x)的周期T和單調(diào)遞增區(qū)間;
          (Ⅱ)若f(θ)=-3,且θ∈(-
          24
          ,
          π
          24
          )
          ,求θ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)y=asinx+bcosx+c的圖象上有一個(gè)最低點(diǎn)(
          11π
          6
          ,-1)

          (Ⅰ)如果x=0時(shí),y=-
          3
          2
          ,求a,b,c.
          (Ⅱ)如果將圖象上每個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來(lái)的
          3
          π
          ,然后將所得圖象向左平移一個(gè)單位得到y(tǒng)=f(x)的圖象,并且方程f(x)=3的所有正根依次成為一個(gè)公差為3的等差數(shù)列,求y=f(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1為正實(shí)數(shù).
          (Ⅰ)用xn表示xn+1;
          (Ⅱ)若x1=4,記an=lg
          xn+2xn-2
          ,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
          (Ⅲ)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則函數(shù)f(x)的解析式為(  )
          A、f(x)=2sin(
          1
          2
          x+
          π
          6
          )
          B、f(x)=2sin(
          1
          2
          x-
          π
          6
          )
          C、f(x)=2sin(2x-
          π
          6
          )
          D、f(x)=2sin(2x+
          π
          6
          )

          查看答案和解析>>

          同步練習(xí)冊(cè)答案