日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義域?yàn)镽的函數(shù)f(x)滿足:f(4)=-3,且對(duì)任意x∈R總有f′(x)<3,則不等式f(x)<3x-15的解集為


          1. A.
            (-∞,4)
          2. B.
            (-∞,-4)
          3. C.
            (-∞,-4)∪(4,+∞)
          4. D.
            (4,+∞)
          D
          分析:設(shè)F(x)=f(x)-(3x-15)=f(x)-3x+15,則F′(x)=f′(x)-3,由對(duì)任意x∈R總有f′(x)<3,知F′(x)=f′(x)-3<0,所以F(x)=f(x)-3x+15在R上是減函數(shù),由此能夠求出結(jié)果.
          解答:設(shè)F(x)=f(x)-(3x-15)=f(x)-3x+15,
          則F′(x)=f′(x)-3,
          ∵對(duì)任意x∈R總有f′(x)<3,
          ∴F′(x)=f′(x)-3<0,
          ∴F(x)=f(x)-3x+15在R上是減函數(shù),
          ∵f(4)=-3,
          ∴F(4)=f(4)-3×4+15=0,
          ∵f(x)<3x-15,
          ∴F(x)=f(x)-3x+15<0,
          ∴x>4.
          故選D.
          點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的應(yīng)用,是中檔題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•石家莊二模)已知定義域?yàn)镽的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義域?yàn)镽的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
          5
          3
          5
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義域?yàn)镽的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對(duì)稱軸為x=4,則( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義域?yàn)镽的函數(shù)f(x)=
          -2x+a2x+1
          是奇函數(shù)
          (1)求a值;
          (2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
          (3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍;
          (4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點(diǎn),求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義域?yàn)镽的函數(shù)f(x)滿足f(4-x)=-f(x),當(dāng)x<2時(shí),f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案