日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知四棱錐P-ABCD,底面ABCD為蓌形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點。 

          (Ⅰ)求證:AE⊥PD;

          (Ⅱ)若直線PB與平面PAD所成角的正弦值為,求二面角E-AF-C的余弦值.

          【解析】(Ⅰ)要證AE⊥PD ,先證AE⊥平面PAD,需要證明PA⊥AE,轉(zhuǎn)化為證PA⊥平面ABCD;(Ⅱ)建立坐標(biāo)系計算二面角E-AF-C的余弦值.

           

          【答案】

          (Ⅰ)證明:由四邊形ABCD為菱形,∠ABC=60°,可得△ABC為正三角形.

          因為E為BC的中點,所以AE⊥BC.又BC∥AD,因此AE⊥AD.

          因為PA⊥平面ABCD,AE平面ABCD,所以PA⊥AE.

          而PA平面PAD,AD平面PAD 且PA∩AD=A,

          所以  AE⊥平面PAD,又PD平面PAD.所以 AE⊥PD.……6分

          (Ⅱ)解:由(Ⅰ)知AE,AD,AP兩兩垂直,以A為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,

          設(shè)AB=2,AP=a,則A(0,0,0),B(,-1,0),C(,1,0),D(0,2,0),P(0,0,a),E(,0,0),F(xiàn)(),

          所以?=(,-1,-a),且?=(,0,0)為平面PAD的法向量,設(shè)直線PB與平面PAD所成的角為θ,

          由sinθ=|cos<?,?>|===……8分

          解得a=2 所以?=(,0,0),?=(,,1)

          設(shè)平面AEF的一法向量為m=(x1,y1,z1),則,因此取z1=-1,則m=(0,2,-1),……10分 因為BD⊥AC,BD⊥PA,PA∩AC=A,所以BD⊥平面AFC,故為平面AFC的一法向量.又=(-,3,0),

          所以cos<m,>=.

          因為二面角E-AF-C為銳角,所以所求二面角的余弦值為.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,
          求證:
          (1)PC∥平面EBD.
          (2)平面PBC⊥平面PCD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
          (1)證明:AE⊥PD;
          (2)設(shè)AB=2,若H為線段PD上的動點,EH與平面PAD所成的最大角的正切值為
          6
          2
          ,求AP的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點E是BC邊上的中點.
          (1)求證:AD⊥面PDE;
          (2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
          8
          3
          3
          ;①求VP-ABED; ②求二面角P-AB-C大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•崇明縣二模)如圖,已知四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,E、F分別是BC,PC的中點,AB=2,AP=2.
          (1)求證:BD⊥平面PAC;
          (2)求二面角E-AF-C的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•吉林二模)如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,點M,N分別在PD,PC上,
          PN
          =
          1
          2
          NC
          ,PM=MD.
          (Ⅰ) 求證:PC⊥面AMN;
          (Ⅱ)求二面角B-AN-M的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案