日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:+=1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)連結(jié)成等腰直角三角形,直線l:x-y-b=0是拋物線x2=4y的一條切線.
          (1)求橢圓方程;
          (2)直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)P滿足++=(O為坐標(biāo)原點(diǎn)),判斷點(diǎn)P是否在橢圓C上,并說明理由.
          【答案】分析:(1)由于直線l:x-y-b=0是拋物線x2=4y的一條切線,聯(lián)立消去一個(gè)未知數(shù),令△=0即可得到b.再利用橢圓C的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)連結(jié)成等腰直角三角形即可得到,即可得到a.
          (2)把直線l的方程與橢圓方程聯(lián)立即可解得點(diǎn)A,B的坐標(biāo),再利用點(diǎn)P滿足++=(O為坐標(biāo)原點(diǎn))即可得到點(diǎn)P的坐標(biāo),判斷是否滿足橢圓方程即可.
          解答:解:(1)聯(lián)立,消去y得到x2-4x+4b=0.
          ∵直線l:x-y-b=0是拋物線x2=4y的一條切線,∴△=16-16b=0,解得b=1.
          ∵橢圓C:+=1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)連結(jié)成等腰直角三角形,
          .故所求的橢圓方程為
          (2)由得3x2-2x-1=0,解得
          ,
          設(shè)P(x,y),∵
          =(0,0),
          解得,∴
          把點(diǎn)代入橢圓方程,得
          ∴點(diǎn)P不在橢圓C上.
          點(diǎn)評(píng):熟練掌握橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與圓錐曲線相切相交問題、向量運(yùn)算等是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:+y2=1,則與橢圓C關(guān)于直線y=x成軸對(duì)稱的曲線的方程是____________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年陜西省高考數(shù)學(xué)壓軸卷(解析版) 題型:選擇題

          已知橢圓C:+=1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,過F2線與圓x2+y2=b2相切于點(diǎn)A,并與橢圓C交與不同的兩點(diǎn)P,Q,如圖,PF1⊥PQ,若A為線段PQ的靠近P的三等分點(diǎn),則橢圓的離心率為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣西桂林市、崇左市、防城港市高考第一次聯(lián)合模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

           如圖,已知橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F、F,A是橢圓C上的一點(diǎn),AF⊥FF,O是坐標(biāo)原點(diǎn),OB垂直AF于B,且OF=3OB.

          (Ⅰ)求橢圓C的離心率;

          (Ⅱ)求t∈(0,b),使得命題“設(shè)圓x+y=t上任意點(diǎn)M(x,y)處的切線交橢圓C于Q、Q兩點(diǎn),那么OQ⊥OQ”成立.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省攀枝花市高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知橢圓C:=1(a>b>0)的離心率為,且在x軸上的頂點(diǎn)分別為

          (1)求橢圓方程;

          (2)若直線軸交于點(diǎn)T,P為上異于T的任一點(diǎn),直線分別與橢圓交于M、N兩點(diǎn),試問直線MN是否通過橢圓的焦點(diǎn)?并證明你的結(jié)論.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三上學(xué)期摸底考試文科數(shù)學(xué) 題型:解答題

          (本題滿分14分)已知橢圓C:=1(a>b>0)的離心率為,短軸一

           

          個(gè)端點(diǎn)到右焦點(diǎn)的距離為3.

          (1)求橢圓C的方程;

          (2)過橢圓C上的動(dòng)點(diǎn)P引圓O:的兩條切線PA、PB,A、B分別為切點(diǎn),試探究橢圓C上是否存在點(diǎn)P,由點(diǎn)P向圓O所引的兩條切線互相垂直?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

           

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案