日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知△ABC中,角A、B、C的對(duì)邊分別為a、b、c,AH為BC邊上的高,以下結(jié)論:
          AC
          AH
          |
          AH
          |
          =csinB
          ;
          BC
          •(
          AC
          -
          AB
          )=b2+c2-2bccosA

          AH
          •(
          AB
          +
          BC
          )=
          AH
          AB
          ;
          AH
          AC
          =
          AH
          2

          其中正確的是
          ①②③④
          ①②③④
          .(寫出所有你認(rèn)為正確的結(jié)論的序號(hào))
          分析:畫出圖形,利用向量的數(shù)量積公式,三角形中余弦定理及向量的運(yùn)算法則對(duì)各命題進(jìn)行判斷,看出每一個(gè)命題的正誤
          解答:解:
          AC
          AH
          |
          AH
          |
          =|
          |
          AC
          ||
          AH
          |cos<
          AC
          AH
          |AH
          |
          =|
          AC
          |cos<
          AC
          ,
          AH
          =|
          AH
          |
          而csinB=|
          AH
          |故①正確
          BC
          • (
          AC
          -
          AB
          )=
          BC
          2
          =a2

          由余弦定理有a2=b2+c2-2bccosA
          故有
          BC
          • (
          AC
          -
          AB
          )=  b2+c2-2bccosA
          故②正確
          AH
          •(
          AB
          +
          BC
          )=
          AH
          AC

          AH
          AC
          -
          AH
           •
          AB
          =
          AH
          •(
          AC
          -
          AB
          )
          =
          AH
          BC
          =0

          AH
          AC
          =
          AH
          AB
          故③正確
          AH
          AC
          =
          AH
          •(
          AH
          +
          BH
          )
          =
          AH
          2
          故④正確

          故答案為:①②③④.
          點(diǎn)評(píng):本題考查了三角形和平面向量的相關(guān)性質(zhì),本題解題的關(guān)鍵是靈活應(yīng)用數(shù)量積的公式和數(shù)量積的運(yùn)算律,一定要引起大家足夠的重視.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,AH為BC邊上的高,以下結(jié)論:①
          AH
          •(
          AC
          -
          AB
          )=0
          ;
          AB
          BC
          <0⇒△ABC
          為鈍角三角形;
          AC
          AH
          |
          AH
          |
          =csinB
          ;
          BC
          •(
          AC
          -
          AB
          )=a2
          ,其中正確的個(gè)數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知△ABC中,角A、B、C的對(duì)邊分別是a、b、c,且滿足b+c=
          3
          a
          ,設(shè)
          m
          =[cos(
          π
          2
          +A),-1],
          n
          =(cosA-
          5
          4
          ,-sinA),
          m
          n
          ,試求角B的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c.
          (1)證明:
          a+b
          2a+b
          c
          a+c

          (2)證明:不論x取何值總有b2x2+(b2+c2-a2)x+c2>0;
          (3)若a>c≥2,證明:
          1
          a+c+1
          -
          1
          (c+1)(a+1)
          1
          6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知△ABC中,角A、B、C所對(duì)的邊長分別為a,b,c且角A,B、C成等差數(shù)列,△ABC的面積S=
          b2-(a-c)2k
          ,則實(shí)數(shù)k的值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,a=
          2
          ,向量
          m
          =(-1,1)
          ,
          n
          =(cosBcosC,sinBsinC-
          2
          2
          )
          ,且
          m
          n

          (Ⅰ)求A的大小;
          (Ⅱ)當(dāng)sinB+cos(
          12
          -C)
          取得最大值時(shí),求角B的大小和△ABC的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案