日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知F1、F2是橢圓的兩個焦點,過F2的直線交橢圓于點A、B.若|AB|=5,則|AF1|+|BF1|的值為   
          【答案】分析:由橢圓的定義得 ,所以|AB|+|AF2|+|BF2|=20,由此可求出|AB|的長.
          解答:解:由橢圓的定義得
          兩式相加得|AB|+|AF2|+|BF2|=16,
          則|AF1|+|BF1|=16-5=11,
          故答案為:11.
          點評:本題考查橢圓的基本性質(zhì)和應用,解題時要注意公式的合理運用.本題主要考查了橢圓的標準方程和橢圓與其他曲線的關(guān)系.要求學生綜合掌握如直線、橢圓、拋物線等圓錐曲線的基本性質(zhì).
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知F1,F(xiàn)2是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的兩個焦點,若在橢圓上存在一點P,使∠F1PF2=120°,則橢圓離心率的范圍是
          [
          3
          2
          ,1
          [
          3
          2
          ,1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知F1、F2是橢圓
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)
          的兩個焦點,若橢圓上存在點P使得∠F1PF2=120°,求橢圓離心率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知F1、F2是橢圓的兩個焦點.△F1AB為等邊三角形,A,B是橢圓上兩點且AB過F2,則橢圓離心率是
          3
          3
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知 F1、F2是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的兩個焦點,橢圓上存在一點P,使得SF1PF2=
          3
          b2
          ,則該橢圓的離心率的取值范圍是
          [
          3
          2
          ,1)
          [
          3
          2
          ,1)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知F1,F(xiàn)2是橢圓
          x2
          2
          +y2=1
          的兩個焦點,點P是橢圓上一個動點,那么|
          PF1
          +
          PF2
          |
          的最小值是(  )

          查看答案和解析>>

          同步練習冊答案