日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=60°,四邊形BCC1B1為矩形,若AB⊥BC且AB=4,BC=3
          (1)求證:平面A1CB⊥平面ACB1;
          (2)求三棱柱ABC-A1B1C1的體積.

          解:(1)證明:∵四邊形BCC1B1為矩形,∴B1B⊥CB,
          又AB⊥CB,B1B∩AB=B
          ∴CB⊥面A1ABB1,AB1?A1ABB1,
          ∴CB⊥AB1
          ∵四邊形A1ABB1為菱形,∴A1B⊥AB1,且CB∩A1B=B,
          ∴AB1⊥平面A1CB,∵AB1?平面ACB1,
          ∴平面A1CB⊥平面ACB1;
          (2)過點(diǎn)A作BC的平行線,過C作BA的平行線,兩線交于點(diǎn)D,
          則四邊形ABCD為平行四邊形.
          同樣地作圖得出A1B1C1D1為平行四邊形.
          連接D1D,即將三棱柱ABC-A1B1C1中補(bǔ)上了同等體積的幾何體A1C1D1-ACD.構(gòu)成四棱柱A1B1C1D1-ABCD,
          由(1)中CB⊥面A1ABB1,看作以A1ABB1為底面,以BC為高的四棱柱.
          ∴V三棱柱ABC-A1B1C1=V四棱柱A1B1C1D1-ABCD
          =S菱形A1ABB1×CB
          =×4×4sin60°×3
          =12
          分析:(1)要證平面A1CB⊥平面ACB1;可以通過證出AB1⊥平面A1CB而得到.因?yàn)樗倪呅蜛1ABB1為菱形,所以A1B⊥AB1.若證出CB⊥AB1則可,由已知,利用CB⊥面A1ABB1,可實(shí)現(xiàn).
          (2)可將三棱柱ABC-A1B1C1中補(bǔ)上同等體積的幾何體A1C1D1-ACD.構(gòu)成四棱柱A1B1C1D1-ABCD,而四棱柱A1B1C1D1-ABCD 視為以菱形A1ABB1為底面,CB為高的幾何體,體積易求.
          點(diǎn)評:本題考查直線和直線、直線和平面、平面和平面垂直關(guān)系的判定與轉(zhuǎn)化,柱體體積的計(jì)算,考查空間想象、轉(zhuǎn)化、計(jì)算、論證能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱柱ABC-A'B'C'中,若E、F分別為AB、AC的中點(diǎn),平面EB'C'F將三棱柱分成體積為V1、V2的兩部分,那么V1:V2為( 。
          A、3:2B、7:5C、8:5D、9:5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
          5
          ,則此三棱柱的側(cè)視圖的面積為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=60°,四邊形BCC1B1為矩形,若AB⊥BC且AB=4,BC=3
          (1)求證:平面A1CB⊥平面ACB1;
          (2)求三棱柱ABC-A1B1C1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•通州區(qū)一模)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
          2
          ,CC1=4,M是棱CC1上一點(diǎn).
          (Ⅰ)求證:BC⊥AM;
          (Ⅱ)若N是AB上一點(diǎn),且
          AN
          AB
          =
          CM
          CC1
          ,求證:CN∥平面AB1M;
          (Ⅲ)若CM=
          5
          2
          ,求二面角A-MB1-C的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分別在線段B1C1上,B1E=3EC1,AC=BC=CC1=4.
          (1)求證:BC⊥AC1
          (2)試探究:在AC上是否存在點(diǎn)F,滿足EF∥平面A1ABB1,若存在,請指出點(diǎn)F的位置,并給出證明;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案