日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•浦東新區(qū)三模)已知集合A={a1,a2…an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性質(zhì)P:對(duì)任意i,j(1≤i≤j≤n),ai+aj與aj-ai至少一個(gè)屬于A,
          (1)分別判斷集合M={0,2,4}與N=(1,2,3)是否具有性質(zhì)P,并說(shuō)明理由;
          (2)①求證:0∈A;②當(dāng)n=3時(shí),集合A中元素a1、a2、a3是否一定成等差數(shù)列,若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由;
          (3)對(duì)于集合A中元素a1、a2、…an,若an=2012,求數(shù)列{an}的前n項(xiàng)和Sn(用n表示).
          分析:(1)根據(jù)題意分別把集合M和N中的元素代入:ai+aj與aj-ai進(jìn)行驗(yàn)證,可判斷是否具有性質(zhì)P;
          (2)①根據(jù)a1、a2、…an的大小關(guān)系和性質(zhì)P,可得an+an=2an>an,則an-an=0=a1∈A,
          ②由a1、a2、a3的大小關(guān)系和由性質(zhì)P判斷出:a1=a3-a3=0∈A,a3-a2=a2,即得2a2=a1+a3,故結(jié)論得證;
          (3)由a1、a2、…an的關(guān)系和性質(zhì)P,可求出元素a1、a2、…an的表達(dá)式,再代入所求的前n項(xiàng)和Sn進(jìn)行化簡(jiǎn)得
          n
          2
          an
          ,代入an=2012求出Sn
          解答:解:(1)由題意得,
          對(duì)于集合M:得2-0=2,4-2=2,4-0=4,0-0=2-2=4-4=0,
          ∵2,4,0∈M,∴集合具有性質(zhì)P.
          對(duì)于集合N:得2+2=4,2-2=0,
          ∵4,0∉N,∴集合N不具性質(zhì)P,
          (2)證明:①∵0≤a1<a2<…<an,n∈N*,n≥3,
          ∴an+an=2an>an,則an-an=0=a1∈A,
          ②當(dāng)n=3時(shí),集合A中元素a1,a2,a3一定成等差數(shù)列.
          證明:當(dāng)n=3時(shí),0≤a1<a2<a3,
          ∴0≤a3-a3<a3-a2<a3-a1
          且a3+a3>a3,∴a3+a3∉A,∴a3-a3=0∈A,∴a1=0∈A,
          則a3+a2>a3,∴a3+a2∉A,∴a3-a2∈A,
          ∴a3-a2=a2,即a3=2a2,又∵a1=0,∴2a2=a1+a3
          故a1,a2,a3成等差數(shù)列,
          (3)由題意得,0≤a1<a2<…<an,∴0≤an-an<an-an-1<…<an-a1,
          ∴an+an-i>an(i=1,2,…n-1),∴an-an-i∈A,
          ∴a1=an-an,a2=an-an-1,a3=an-an-2,…an=an-a1,
          ∴Sn=a1+a2+…+an=nan-(a1+a2+…+an),即Sn=nan-Sn,
          則Sn=
          n
          2
          an
          =
          n
          2
          ×2012
          =606n.
          點(diǎn)評(píng):本題考查了等差數(shù)列的證明,數(shù)列求和等綜合問(wèn)題,以及新定義的靈活應(yīng)用能力,難度較大.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•浦東新區(qū)一模)函數(shù)y=
          log2(x-2) 
          的定義域?yàn)?!--BA-->
          [3,+∞)
          [3,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•浦東新區(qū)一模)若X是一個(gè)非空集合,M是一個(gè)以X的某些子集為元素的集合,且滿足:
          ①X∈M、∅∈M;
          ②對(duì)于X的任意子集A、B,當(dāng)A∈M且B∈M時(shí),有A∪B∈M;
          ③對(duì)于X的任意子集A、B,當(dāng)A∈M且B∈M時(shí),A∩B∈M;
          則稱M是集合X的一個(gè)“M-集合類”.
          例如:M={∅,,{c},{b,c},{a,b,c}}是集合X={a,b,c}的一個(gè)“M-集合類”.已知集合X={a,b,c},則所有含{b,c}的“M-集合類”的個(gè)數(shù)為
          10
          10

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•浦東新區(qū)二模)手機(jī)產(chǎn)業(yè)的發(fā)展催生了網(wǎng)絡(luò)新字“孖”.某學(xué)生準(zhǔn)備在計(jì)算機(jī)上作出其對(duì)應(yīng)的圖象,其中A(2,2),如圖所示.在作曲線段AB時(shí),該學(xué)生想把函數(shù)y=x
          1
          2
          ,x∈[0,2]
          的圖象作適當(dāng)變換,得到該段函數(shù)的曲線.請(qǐng)寫出曲線段AB在x∈[2,3]上對(duì)應(yīng)的函數(shù)解析式
          y=
          2
          (x-2)
          1
          2
          +2
          y=
          2
          (x-2)
          1
          2
          +2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•浦東新區(qū)一模)設(shè)復(fù)數(shù)z滿足|z|=
          10
          ,且(1+2i)z(i是虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在直線y=x上,求z.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•浦東新區(qū)二模)已知z=
          1
          1+i
          ,則
          .
          z
          =
          1
          2
          +
          1
          2
          i
          1
          2
          +
          1
          2
          i

          查看答案和解析>>

          同步練習(xí)冊(cè)答案