日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義在R上的函數(shù)f(x)>0,對任意x,y∈R都有f(x+y)=f(x) f(y)成立,且當(dāng)x>0時,f(x)>1.
          (1)求f(0)的值;
          (2)求證f(x)在R上是增函數(shù);
          (3)若f(k•3x)f(3x-9x-2)<1對任意x∈R恒成立,求實數(shù)k的取值范圍.
          分析:(1)利用賦值法,令x=0,y=1,結(jié)合當(dāng)x>0時,f(x)>1,可求f(0)的值;
          (2)在R上設(shè)出兩個變量,利用當(dāng)x>0時,f(x)>1,確定函數(shù)值的大小關(guān)系,即可證得結(jié)論;
          (3)利用單調(diào)性,結(jié)合f(x+y)=f(x)f(y),f(0)=1,轉(zhuǎn)化為具體不等式,再分離參數(shù),利用基本不等式,即可求得實數(shù)k的取值范圍.
          解答:(1)解:令x=0,y=1,則f(0+1)=f(0)f(1),
          ∵當(dāng)x>0時,f(x)>1,∴f(1)>1,∴f(0)=1;
          (2)證明:設(shè)x1<x2,則x2-x1>0
          ∵當(dāng)x>0時,f(x)>1,∴f(x2-x1)>1
          ∴f(x2)=f(x2-x1+x1)=f(x2-x1)f(x1)>f(x1
          ∴f(x)在R上是增函數(shù);
          (3)解:∵f(x)在R上是增函數(shù),f(k•3x) f(3x-9x-2)=f(k 3x+3x-9x-2)<f(0),
          ∴32x-(1+k)•3x+2>0對任意x∈R成立.
          ∴1+k<3x+
          2
          3x

          ∵3x>0,∴3x+
          2
          3x
          2
          2

          ∴k<2
          2
          -1
          點評:本題考查抽象函數(shù),考查賦值法的運用,考查函數(shù)單調(diào)性的證明,考查恒成立問題,考查分離參數(shù)、基本不等式的運用,正確分離參數(shù),求出最值是關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
          π
          2
          ]時,f(x)=sinx,則f(
          3
          )的值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
          (1)求f(x)的解析式;
          (2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在R上的函數(shù)f(x)滿足:f(x+2)=
          1-f(x)1+f(x)
          ,當(dāng)x∈(0,4)時,f(x)=x2-1,則f(2010)=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
          π
          2
          ),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數(shù)y=sin(2x+
          π
          3
          )圖象所有對稱中心都在f(x)圖象的對稱軸上.
          (1)求f(x)的表達(dá)式;    
          (2)若f(
          x0
          2
          )=
          3
          2
          (x0∈[-
          π
          2
          ,
          π
          2
          ]),求cos(x0-
          π
          3
          )的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:
          x 0 1 2 3
          f(x) 3.1 0.1 -0.9 -3
          那么函數(shù)f(x)一定存在零點的區(qū)間是(  )

          查看答案和解析>>

          同步練習(xí)冊答案