日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標系中,為拋物線上不同的兩點,且,點于點.

          (1)求的值;

          (2)過軸上一點 的直線,兩點,的準線上的射影分別為,的焦點,若,求中點的軌跡方程.

          【答案】1;(2

          【解析】

          1)由點于點,可求得直線AB的方程,聯(lián)立直線方程與拋物線方程由韋達定理可表示,進而表示,再由,得構(gòu)建方程,解得p值;

          2)分別表示,由已知構(gòu)建方程,解得t的值,設(shè)的中點的坐標為,當軸不垂直時,由構(gòu)建等式,整理得中點軌跡方程;當軸垂直時,重合,綜上可得答案.

          (1)由,得直線的斜率,

          的方程為,即

          設(shè),,

          聯(lián)立消去,,

          由韋達定理,得,于是,

          ,得,即,則

          解得.

          (2)由(1)得拋物線的焦點,設(shè)的準線與軸的交點為,

          ,

          ,得,且,得.

          設(shè)的中點的坐標為,

          則當軸不垂直時,由,

          可得,

          ;

          軸垂直時,重合,

          所以的中點的軌跡方程為.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知拋物線C,過拋物線焦點F的直線交拋物線CA,B兩點,P是拋物線外一點,連接,分別交拋物線于點CD,且,設(shè),的中點分別為M,N.

          1)求證:軸;

          2)若,求面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          1)討論的單調(diào)性;

          2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,已知多面體中,四邊形為菱形,為正四面體,且.

          1)求證:平面;

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在梯形ABCD中,ABCD,ADDCBC1,∠ABC60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF1

          1)證明:BC⊥平面ACFE;

          2)設(shè)點M在線段EF上運動,平面MAB與平面FCB所成銳二面角為θ,求cosθ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A0,1)為直角頂點.若該三角形的面積的最大值為,則實數(shù)a的值為_____

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】對有個元素的總體進行抽樣,先將總體分成兩個子總體是給定的正整數(shù),且),再從每個子總體中各隨機抽取2個元素組成樣本.表示元素同時出現(xiàn)在樣本中的概率.

          1)求的表達式(用,表示);

          2)求所有的和.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在△ABC中,a,c,________.(補充條件)

          1)求△ABC的面積;

          2)求sinA+B.

          從①b4,②cosB,③sinA這三個條件中任選一個,補充在上面問題中并作答.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),令,其中是函數(shù)的導函數(shù).

          (Ⅰ)時,求的極值;

          (Ⅱ)時,若存在,使得恒成立,求的取值范圍.

          查看答案和解析>>

          同步練習冊答案