【題目】給出下列四個(gè)結(jié)論:
①若命題,
,則
;
②集合滿足:
,則符合條件的集合
的個(gè)數(shù)為3;
③命題“若,則方程
有實(shí)數(shù)根”的逆否命題為:“若方程
沒有實(shí)數(shù)根,則
”;
④設(shè)復(fù)數(shù)滿足
,
為虛數(shù)單位,復(fù)數(shù)
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第三象限;
其中正確結(jié)論的個(gè)數(shù)為( )
A.1B.2C.3D.4
【答案】B
【解析】
根據(jù)特稱命題的否定形式,可判斷①;根據(jù)集合的子集的個(gè)數(shù)計(jì)算公式,可分析②;由“若p,則q”的否定形式,可判斷③;,用復(fù)數(shù)的除法運(yùn)算化簡,計(jì)算
,繼而判斷對應(yīng)的點(diǎn)所在的象限.
選項(xiàng)①,若命題,
,則
,由特稱命題的否定形式,正確;
選項(xiàng)②,集合滿足:
,由子集的個(gè)數(shù)計(jì)算公式,符合條件的集合
的個(gè)數(shù)為
個(gè),不正確;
選項(xiàng)③,命題“若,則方程
有實(shí)數(shù)根”的逆否命題為:“若方程
沒有實(shí)數(shù)根,則
”,正確;
選項(xiàng)④,,
為虛數(shù)單位,復(fù)數(shù)
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,不正確.
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)三位數(shù)的個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,我們就稱這個(gè)三位數(shù)為“遞增三位數(shù)”.現(xiàn)從所有的遞增三位數(shù)中隨機(jī)抽取一個(gè),則其三個(gè)數(shù)字依次成等差數(shù)列的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為
,焦距為2,拋物線
的準(zhǔn)線經(jīng)過C的左焦點(diǎn)F.
(1)求C與M的方程;
(2)直線l經(jīng)過C的上頂點(diǎn)且l與M交于P,Q兩點(diǎn),直線FP,FQ與M分別交于點(diǎn)D(異于點(diǎn)P),E(異于點(diǎn)Q),證明:直線DE的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若拋物線的焦點(diǎn)是
,準(zhǔn)線是
,點(diǎn)
是拋物線上一點(diǎn),則經(jīng)過點(diǎn)
、
且與
相切的圓共( )
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年是中國改革開放的第40周年,為了充分認(rèn)識新形勢下改革開放的時(shí)代性,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:,并繪制了如圖所示的頻率分布直方圖.
(1)現(xiàn)從年齡在內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機(jī)抽取3人進(jìn)行座談,用
表示年齡在
內(nèi)的人數(shù),求
的分布列和數(shù)學(xué)期望;
(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有名市民的年齡在
的概率為
.當(dāng)
最大時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線
與曲線
,(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線,
的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,已知與
,
的公共點(diǎn)分別為
,
,
,當(dāng)
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
過點(diǎn)
,過坐標(biāo)原點(diǎn)
作兩條互相垂直的射線與橢圓
分別交于
,
兩點(diǎn).
(1)證明:當(dāng)取得最小值時(shí),橢圓
的離心率為
.
(2)若橢圓的焦距為2,是否存在定圓與直線
總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地環(huán)保部門跟蹤調(diào)查一種有害昆蟲的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲的數(shù)量(萬只)與時(shí)間
(年)(其中
)的關(guān)系為
.為有效控制有害昆蟲數(shù)量、保護(hù)生態(tài)環(huán)境,環(huán)保部門通過實(shí)時(shí)監(jiān)控比值
(其中
為常數(shù),且
)來進(jìn)行生態(tài)環(huán)境分析.
(1)當(dāng)時(shí),求比值
取最小值時(shí)
的值;
(2)經(jīng)過調(diào)查,環(huán)保部門發(fā)現(xiàn):當(dāng)比值不超過
時(shí)不需要進(jìn)行環(huán)境防護(hù).為確保恰好3年不需要進(jìn)行保護(hù),求實(shí)數(shù)
的取值范圍.(
為自然對數(shù)的底,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,
,
,
是
的中點(diǎn),△
是等腰三角形,
為
的中點(diǎn),
為
上一點(diǎn);
(1)若∥平面
,求
;
(2)平面將三棱柱
分成兩個(gè)部分,求含有點(diǎn)
的那部分體積;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com