【題目】如圖l,在正方形ABCD中,AB=2,E是AB邊的中點(diǎn),F(xiàn)是BC邊上的一點(diǎn),對角線AC分別交DE、DF于M、N兩點(diǎn).將ADAE,CDCF折起,使A、C重合于A點(diǎn),構(gòu)成如圖2所示的幾何體.
(I)求證:A′D⊥面A′EF;
(Ⅱ)試探究:在圖1中,F(xiàn)在什么位置時,能使折起后的幾何體中EF∥平面AMN,并給出證明.
【答案】證明:(Ⅰ)∵A′D⊥A′E,A′D⊥A′F,
又A′E∩A′F=A′,A′E面A′EF,A′F面A′EF,
∴A′D⊥面A′EF.
(Ⅱ)當(dāng)點(diǎn)F為BC的中點(diǎn)時,EF∥面A′MN.
證明如下:當(dāng)點(diǎn)F為BC的中點(diǎn)時,
在圖(1)中,E,F(xiàn)分別是AB,BC的中點(diǎn),
所以EF∥AC,
即在圖(2)中有EF∥MN.
又EF面A′MN,MN面A′MN,
所以EF∥面A′MN.
【解析】(Ⅰ)由題意可得,A′D⊥A′E,A′D⊥A′F,A′E∩A′F=A′,利用線面垂直的判定定理即可證得結(jié)論;
(Ⅱ)當(dāng)點(diǎn)F為BC的中點(diǎn)時,EF∥面A′MN.在圖(1)中,E,F(xiàn)分別是AB,BC的中點(diǎn),可得EF∥AC,而M∈AC,N∈AC,從而可得EF∥MN,繼而有EF∥平面AMN.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面平行的判定和直線與平面垂直的判定的相關(guān)知識可以得到問題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①定義在上的函數(shù)
滿足
,則
一定不是
上的減函數(shù);
②用反證法證明命題“若實(shí)數(shù),滿足
,則
都為0”時,“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)
都不為0”;
③把函數(shù)的圖象向右平移
個單位長度,所得到的圖象的函數(shù)解析式為
;
④“”是“函數(shù)
為奇函數(shù)”的充分不必要條件.
其中所有正確命題的序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一段時間內(nèi),分5次測得某種商品的價格x(萬元)和需求量y(t)之間的一組數(shù)據(jù)為:
1 | 2 | 3 | 4 | 5 | |
價格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
已知,
(1)畫出散點(diǎn)圖;
(2)求出y對x的線性回歸方程;
(3)如價格定為1.9萬元,預(yù)測需求量大約是多少?(精確到0.01 t).
參考公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù),
),以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)若直線過點(diǎn)
,求直線
的極坐標(biāo)方程;
(2)若直線與曲線交于
兩點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為4,直線
被橢圓
截得的線段長為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右頂點(diǎn)作互相垂直的兩條直線
分別交橢圓
于
兩點(diǎn)(點(diǎn)
不同于橢圓
的右頂點(diǎn)),證明:直線
過定點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了及時向群眾宣傳“十九大”黨和國家“鄉(xiāng)村振興”戰(zhàn)略,需要尋找一個宣講站,讓群眾能在最短的時間內(nèi)到宣講站.設(shè)有三個鄉(xiāng)鎮(zhèn),分別位于一個矩形的兩個頂點(diǎn)
及
的中點(diǎn)
處,
,
,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與
等距離的一點(diǎn)
處設(shè)一個宣講站,記
點(diǎn)到三個鄉(xiāng)鎮(zhèn)的距離之和為
.
(Ⅰ)設(shè),將
表示為
的函數(shù);
(Ⅱ)試?yán)茫á瘢┑暮瘮?shù)關(guān)系式確定宣講站的位置,使宣講站
到三個鄉(xiāng)鎮(zhèn)的距離之和
最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(2,2),B(5,3),C(3,-1).
(1)求△ABC的外接圓的方程;
(2)若點(diǎn)M(a,2)在△ABC的外接圓上,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在[0,1]上的函數(shù)f(x)滿足:
①f(0)=f(1)=0;
②對所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|< |x﹣y|.
若對所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,則m的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com