【題目】如圖,三棱柱中,側(cè)面
底面
,
,
,且
,點(diǎn)
,
,
分別為
,
,
的中點(diǎn).
(Ⅰ)求證:平面
.
(Ⅱ)求證:平面
.
(Ⅲ)寫(xiě)出四棱錐的體積.(只寫(xiě)出結(jié)論,不需要說(shuō)明理由)
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).
【解析】試題分析:(1)由三線合一得A1D⊥AC,再利用面面垂直的性質(zhì)得出A1D⊥平面ABC;
(2)取B1C1的中點(diǎn)為G,連結(jié)FG,GB,則可證明四邊形FGBE為平行四邊形,從而EF∥BG,于是EF∥平面BB1C1C;
(3)過(guò)A1作A1M⊥CC1,垂足為M,則可證明A1M⊥平面BCC1B1.于是A1M為四棱錐A1﹣BB1C1C的高,底面為矩形,代入體積公式計(jì)算即可.
(1)證明:∵,
∴是等邊三角形,
在等邊中,
是邊
的中點(diǎn),
∴,
又∵側(cè)面底面
,
側(cè)面底面
.
側(cè)面
,
∴平面
.
(2)取中點(diǎn)
,連接
,
,
∵,
,
分別是
,
,
中點(diǎn),
∴,
∴四邊形是平行四邊形,
∴.
又∵平面
,
平面
,
∴平面
,
(3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
(
)過(guò)點(diǎn)
,且離心率為
,過(guò)點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn).
(Ⅰ)求橢圓的的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點(diǎn),且
,求
面積的最大值以及此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCO的頂點(diǎn)C、A分別在x軸、y軸上,BC是菱形BDCE的對(duì)角線,若∠D=60°,BC=2,則點(diǎn)D的坐標(biāo)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2a+b|=( 。
A.a+b
B.a﹣2b
C.a﹣b
D.3a
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的對(duì)稱軸為坐標(biāo)軸,離心率為
,且一個(gè)焦點(diǎn)坐標(biāo)為
.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓
相交于
兩點(diǎn),以線段
為鄰邊作平行四邊形
,其中點(diǎn)
在橢圓
上,
為坐標(biāo)原點(diǎn),求點(diǎn)
到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為
,其中
為參數(shù),
,再以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,其中
,
,直線
與曲線
交于
兩點(diǎn).
(1)求的值;
(2)已知點(diǎn),且
,求直線
的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,AE平分∠BAD,交DC的延長(zhǎng)線于點(diǎn)E.求證:DA=DE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓方程為
,雙曲線
的兩條漸近線分別為
,
,過(guò)橢圓
的右焦點(diǎn)作直線
,使
,又
與
交于點(diǎn)
,設(shè)直線
與橢圓
的兩個(gè)交點(diǎn)由上至下依次為
,
.
(1)若與
所成的銳角為
,且雙曲線的焦距為4,求橢圓
的方程;
(2)求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com