日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 自然狀態(tài)下的魚(yú)類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對(duì)魚(yú)群總量的影響。用xn表示某魚(yú)群在第n年年初的總量,n∈N*,且x1>0,不考慮其它因素,設(shè)在第n年內(nèi)魚(yú)群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c。(Ⅰ)求xn+1與xn的關(guān)系式;
          (Ⅱ)猜測(cè):當(dāng)且僅當(dāng)x1,a,b,c滿足什么條件時(shí),每年年初魚(yú)群的總量保持不變?(不要求證明)(Ⅲ)設(shè)a=2,b=1,為保證對(duì)任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強(qiáng)度b的最大允許值是多少?證明你的結(jié)論。
          解:(Ⅰ)從第n年初到第n+1年初,魚(yú)群的繁殖量為axn,被捕撈量為bxn,
          死亡量為
          因此,,
          。
          (Ⅱ)若每年年初魚(yú)群總量保持不變,則xn恒等于x1,n∈N*,
          從而由(*)式,得恒大于0,n∈N*,
          所以,,
          ,
          因?yàn)閤1>0,所以a>b,
          猜測(cè):當(dāng)且僅當(dāng)a>b,且時(shí),每年年初魚(yú)群的總量保持不變.
          (Ⅲ)若b的值使得xn>0,n∈N*, 由xn+1=xn(3-b-xn), n∈N*,
          知0<xn<3-b,n∈N*,
          特別地,有0<x1<3-b,即0<b<3-x1,
          而x1∈(0, 2),所以b∈(0,1], 由此猜測(cè)b的最大允許值是1。
          下證:當(dāng)x1∈(0, 2) ,b=1時(shí),都有xn∈(0, 2), n∈N*,
          ①當(dāng)n=1時(shí),結(jié)論顯然成立;
          ②假設(shè)當(dāng)n=k時(shí)結(jié)論成立,即xk∈(0, 2),則當(dāng)n=k+1時(shí),xk+1=xk(2-xk)>0,
          又因?yàn)閤k+1=xk(2-xk)=-(xk-1)2+1≤1<2,
          所以xk+1∈(0, 2),故當(dāng)n=k+1時(shí)結(jié)論也成立;
          由①、②可知,對(duì)于任意的n∈N*,都有xn∈(0,2),
          綜上所述,為保證對(duì)任意x1∈(0, 2), 都有xn>0, n∈N*,則捕撈強(qiáng)度b的最大允許值是1。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          自然狀態(tài)下的魚(yú)類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對(duì)魚(yú)群總量的影響.用xn表示某魚(yú)群在第n年年初的總量,n∈N*,且x1>0.不考慮其它因素,設(shè)在第n年內(nèi)魚(yú)群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c.
          (Ⅰ)求xn+1與xn的關(guān)系式;
          (Ⅱ)猜測(cè):當(dāng)且僅當(dāng)x1,a,b,c滿足什么條件時(shí),每年年初魚(yú)群的總量保持不變?(不要求證明)
          (Ⅲ)設(shè)a=2,b=1,為保證對(duì)任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強(qiáng)度b的
          最大允許值是多少?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          自然狀態(tài)下的魚(yú)類是一種可再生的資源,為了持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對(duì)魚(yú)群總量的影響.用xn表示某魚(yú)群在第n年初的總量,n∈N*,且x1>0.不考慮其他因素,設(shè)在第n年內(nèi)魚(yú)群的繁殖量及被捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正數(shù)a,b,c其中b稱為捕撈強(qiáng)度.
          (1)求xn+1與xn的關(guān)系式;
          (2)設(shè)a=2,c=1,為了保證對(duì)任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強(qiáng)度B的最大允許值是多少?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (05年湖南卷理)(14分)

                自然狀態(tài)下的魚(yú)類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對(duì)魚(yú)群總量的影響. 用xn表示某魚(yú)群在第n年年初的總量,n∈N*,且x1>0.不考慮其它因素,設(shè)在第n年內(nèi)魚(yú)群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c.

             (Ⅰ)求xn+1與xn的關(guān)系式;

             (Ⅱ)猜測(cè):當(dāng)且僅當(dāng)x1,a,b,c滿足什么條件時(shí),每年年初魚(yú)群的總量保持不變?(不

          要求證明)

            (Ⅱ)設(shè)a=2,b=1,為保證對(duì)任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強(qiáng)度b的

                   最大允許值是多少?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          自然狀態(tài)下的魚(yú)類是一種可再生的資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對(duì)魚(yú)群總量的影響.用xn表示某魚(yú)群在第n年年初的總量,n∈N*x1>0.不考慮其他因素,設(shè)在第n年內(nèi)魚(yú)群的繁殖量及被捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a、b、c.

          (1)求x n+1xn的關(guān)系式.

          (2)猜測(cè):當(dāng)且僅當(dāng)x1、a、b、c滿足什么條件時(shí),每年年初魚(yú)群的總量保持不變?(不要求證明)

          (3)設(shè)a=2,c=1,為保證對(duì)任意x1∈(0,2),都有xn>0,n∈N *,則捕撈強(qiáng)度b的最大允許值是多少?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三上學(xué)期第四次測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          自然狀態(tài)下的魚(yú)類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對(duì)魚(yú)群總量的影響. 用xn表示某魚(yú)群在第n年年初的總量,n∈N*,且x1>0.不考慮其它因素,設(shè)在第n年內(nèi)魚(yú)群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c.

          (Ⅰ)求xn+1與xn的關(guān)系式;

          (Ⅱ)猜測(cè):當(dāng)且僅當(dāng)x1,a,b,c滿足什么條件時(shí),每年年初魚(yú)群的總量保持不變?(不要求證明)

          (Ⅲ)設(shè)a=2,b>0,c=1為保證對(duì)任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強(qiáng)度b的最大允許值是多少?證明你的結(jié)論.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案