日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直角梯形ABCD中,BC∥AD,BA⊥AD,PA⊥面ABCD,E是PD的中點,過BC和點E的平面與PA交于點F,且PA=AB=BC=2,AD=4.
          (1)求證:BC∥EF;
          (2)求四邊形BCEF的面積.
          分析:(1)由題意可得BC∥面PAD,又∵BC?面BCEF,面BCEF∩面PAD=EF由線面平行的性質(zhì)定理可得答案;
          (2)由條件可得EF是△PAD的中位線,可得EF=
          1
          2
          AD=2
          ,進(jìn)而可證四邊形BCEF是平行四邊形,再由條件結(jié)合線面垂直的判斷可得EF⊥面PAB,進(jìn)而可得四邊形BCEF是矩形,在Rt△FAB中,可得FB,代入面積公式SBCEF=EF•FB計算可得.
          解答:(1)證明:∵BC∥AD,BC?面PAD,∴BC∥面PAD…(2分)
          又∵BC?面BCEF,面BCEF∩面PAD=EF,∴BC∥EF…(4分)
          (2)解:∵BC∥AD,BC∥EF,∴AD∥EF…(5分)
          又∵E是PD的中點,∴EF是△PAD的中位線
          ∴F是PA的中點,且EF=
          1
          2
          AD=2
          …(6分)
          FA=
          1
          2
          PA=1
          ,EF=BC…(7分)
          ∴四邊形BCEF是平行四邊形                        …(8分)
          ∵PA⊥面ABCD,∴PA⊥AD,PA⊥AB…(9分)
          又∵BA⊥AD,BA∩PA=A,PA、BA?面PAB,∴AD⊥面PAB…(10分)
          ∵AD∥EF,∴EF⊥面PAB…(11分)
          ∵FB?面PAB,∴EF⊥FB,∴四邊形BCEF是矩形                             …(12分)
          在Rt△FAB中,FB=
          FA2+AB2
          =
          12+22
          =
          5
          …(13分)
          ∴四邊形BCEF的面積為SBCEF=EF•FB=2
          5
          …(14分)
          點評:本題考查直線與平面平行的判斷和性質(zhì),涉及直線與平面垂直的判斷,屬中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2014•宜賓一模)如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面積等于△ADC面積的
          12
          .梯形ABCD所在平面外有一點P,滿足PA⊥平面ABCD,PA=AB.
          (1)求證:平面PCD⊥平面PAC;
          (2)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明;若不存在,請說明理由.
          (3)求二面角A-PD-C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•惠州一模)如圖,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
          (1)求證:AF∥平面BDE;
          (2)求四面體B-CDE的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省南昌市高三第二次模擬測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          (本小題滿分12分)如圖:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分別是邊AD和BC上的點,且EF∥AB,AD =2AE =2AB = 4AF= 4,將四邊形EFCD沿EF折起使AE=AD.

          (1)求證:AF∥平面CBD;

          (2)求平面CBD與平面ABFE夾角的余弦值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年廣東省惠州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

          如圖,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
          (1)求證:AF∥平面BDE;
          (2)求四面體B-CDE的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年寧夏銀川市賀蘭一中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

          如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面積等于△ADC面積的.梯形ABCD所在平面外有一點P,滿足PA⊥平面ABCD,PA=PB.
          (1)求證:平面PCD⊥平面PAC;
          (2)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明;若不存在,請說明理由.
          (3)求二面角A-PD-C的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案