日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=x2ex的導(dǎo)函數(shù)f′(x),則不等式f′(x)>0的解集為
          {x|x>0或x<-2}
          {x|x>0或x<-2}
          分析:利用導(dǎo)數(shù)的運算法則求出函數(shù)f(x)=x2ex的導(dǎo)函數(shù)f′(x),把不等式f′(x)>0轉(zhuǎn)化為一元二次不等式求解.
          解答:解:由f(x)=x2ex,得:f(x)=2xex+x2ex
          由f′(x)>0,得:2xex+x2ex>0,
          即ex(2x+x2)>0,因為ex>0恒成立,
          所以,x2+2x>0,解得x<-2或x>0.
          所以,不等式f′(x)>0的解集為{x|x<-2或x>0}.
          故答案為{x|x<-2或x>0}.
          點評:本題考查了導(dǎo)數(shù)的運算,考查了不等式的解法,解答此題的關(guān)鍵是正確求解原函數(shù)的導(dǎo)函數(shù),此題是中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
          (1)判斷函數(shù)f(x)的奇偶性;
          (2)求函數(shù)f(x)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,則實數(shù)a的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
          1x+1
          ).
          (1)討論f(x)的單調(diào)性.
          (2)若f(x)有兩個極值點x1,x2,且x1<x2,求f(x2)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
          (1)若曲線y=f(x)在x=1處的切線為y=x,求實數(shù)m的值;
          (2)當(dāng)m=2時,若方程f(x)-h(x)=0在[1,3]上恰好有兩個不同的實數(shù)解,求實數(shù)a的取值范圍;
          (3)是否存在實數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
          (1)若a=-6,求f(x)在[0,3]上的最值;
          (2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實數(shù)a的取值范圍;
          (3)求證:不等式ln
          n+1
          n
          n-1
          n3
          (n∈N*)恒成立.

          查看答案和解析>>

          同步練習(xí)冊答案