日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知無窮數(shù)列{an}中,a1,a2,…,am是以10為首項(xiàng),以-2為公差的等差數(shù)列;am+1,am+2,…,a2m是以
          1
          2
          為首項(xiàng),以
          1
          2
          為公比的等比數(shù)列(m≥3,m∈N*);并且對(duì)一切正整數(shù)n,都有an+2m=an成立.若a23=-2,則m=
           
          分析:由題意知,a23=-2是等差數(shù)列中的項(xiàng),求出項(xiàng)數(shù)n,據(jù)an+2m=an成立知,數(shù)列為周期數(shù)列,周期為2m,由n+2m=n解出m的值.
          解答:解:等差數(shù)列通項(xiàng)公式:an=10+(n-1)(-2)=-2n+12,
          等比數(shù)列通項(xiàng)公式:an=
          1
          2
          (
          1
          2
          )
          n-m-1
          =(
          1
          2
          )
          n-m
          ,
          由題意知,a23=-2是等差數(shù)列中的項(xiàng),在等差數(shù)列中,
          令-2n+12=-2,n=7,
          對(duì)一切正整數(shù)n,都有an+2m=an成立,a23=-2,
          ∴7+2m=23,
          ∴m=8,
          點(diǎn)評(píng):本題考查數(shù)列概念,數(shù)列表示法及等比數(shù)列性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知無窮數(shù)列{an}前n項(xiàng)和Sn=
          13
          an-1
          ,則數(shù)列{an}的各項(xiàng)和為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知無窮數(shù)列{an}中a1=1,且滿足從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)的比值為同一個(gè)常數(shù)-
          1
          2
          ,則無窮數(shù)列{an}的各項(xiàng)和
          2
          3
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•閔行區(qū)一模)已知無窮數(shù)列{an},首項(xiàng)a1=3,其前n項(xiàng)和為Sn,且an+1=(a-1)Sn+2(a≠0,a≠1,n∈N*).若數(shù)列{an}的各項(xiàng)和為-
          8
          3
          a
          ,則a=
          -
          1
          2
          -
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•普陀區(qū)二模)已知無窮數(shù)列{an}中,a1,a2,…,am是以10為首項(xiàng),以-2為公差的等差數(shù)列;am+1,am+2,…,a2m是以
          1
          2
          為首項(xiàng),以
          1
          2
          為公比的等比數(shù)列(m≥3,m∈N*);并且對(duì)一切正整數(shù)n,都有an+2m=an成立.
          (1)當(dāng)m=3時(shí),請(qǐng)依次寫出數(shù)列{an}的前12項(xiàng);
          (2)若a23=-2,試求m的值;
          (3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,問是否存在m的值,使得S128m+3≥2008成立?若存在,求出m的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知無窮數(shù)列{an}中,a1,a2,…,am構(gòu)成首項(xiàng)為2,公差為-2的等差數(shù)列am+1,am+2,…,a2m,構(gòu)成首項(xiàng)為
          1
          2
          ,公比為
          1
          2
          的等比數(shù)列,其中m≥3,m∈N+,
          (l)當(dāng)1≤n≤2m,n∈N+,時(shí),求數(shù)列{an}的通項(xiàng)公式;
          (2)若對(duì)任意的n∈N+,都有an+2m=an成立.
          ①當(dāng)a27=
          1
          64
          時(shí),求m的值;
          ②記數(shù)列{an}的前n項(xiàng)和為Sn.判斷是否存在m,使得S4m+1≥2成立?若存在,求出m的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案