日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>0,b>0)
          的離心率為
          6
          3
          ,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為 
          5
          2
          3

          (1)求橢圓C的方程;
          (2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A、B兩點(diǎn).
          ①若線段AB中點(diǎn)的橫坐標(biāo)為-
          1
          2
          ,求斜率k的值; 
          ②x軸上是否存在定點(diǎn)M,使
          MA
          MB
          為定值?若存在,試求出點(diǎn)M的坐標(biāo)和定值;若不存在,請(qǐng)說(shuō)明理由.
          分析:(1)根據(jù)橢圓的離心率,三角形的面積建立方程,結(jié)合a2=b2+c2,即可求橢圓C的方程;
          (2)①直線方程與橢圓聯(lián)立,利用韋達(dá)定理,結(jié)合AB中點(diǎn)的橫坐標(biāo)為-
          1
          2
          ,即可求斜率k的值; 
          ②利用向量的數(shù)量積公式,結(jié)合定值時(shí)與k的取值無(wú)關(guān),即可得到結(jié)論.
          解答:解:(1)由題意
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,a2=b2+c2,
          c
          a
          =
          6
          3
          ,且橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
          5
          2
          3
          ,所以
          1
          2
          b×2c=
          5
          2
          3
          ,所以a2=5,b2=
          5
          3
          ,所以橢圓方程為:
          x2
          5
          +
          y2
          5
          3
          =1
          …(4分)
          (2)①
          y=k(x+1)
          x2
          5
          +
          y2
          5
          3
          =1
          化簡(jiǎn)可得(1+3k2)x2+6k2x+3k2-5=0

          又△=36k4-4(3k2+1)(3k2-5)=48k2+20>0,
          令A(yù)(x1,y1),B(x2,y2),則由韋達(dá)定理可得x1+x2=-
          6k2
          3k2+1
          x1x2=
          3k2-5
          3k2+1

          ∵AB中點(diǎn)的橫坐標(biāo)為-
          1
          2
          ,∴-
          6k2
          3k2+1
          =-
          1
          2
          ,解得k=±
          3
          3
          …(8分)
          ②假設(shè)X軸上存在點(diǎn)M(m,0)使得
          MA
          MB
          為定值,則
          MA
          MB
          =(k2+1)x1x2+(k2-m)(x1-x2)+(k2+m2)=
          (3m2+6m-1)k2+(m2-5)
          3k 2+1

          要使上式為定值,則須使
          3m2+6m-1
          3
          =
          m2-5
          1
          ,∴m=-
          7
          3

          此時(shí)
          MA
          MB
          為定值
          4
          9
          ,定點(diǎn)為M(-
          7
          3
          ,0)…(13分)
          點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查向量的數(shù)量積公式,考查學(xué)生的計(jì)算能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          1
          2
          ,且經(jīng)過(guò)點(diǎn)P(1,
          3
          2
          )

          (1)求橢圓C的方程;
          (2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的短軸長(zhǎng)為2
          3
          ,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
          (1)求橢圓C的方程;
          (2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿足
          DA
          DB
          ,若λ∈[
          3
          8
          1
          2
          ],求直線AB的斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)經(jīng)過(guò)點(diǎn)A(1,
          3
          2
          ),且離心率e=
          3
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過(guò)點(diǎn)B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.若存在,求出直線l的方程;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•房山區(qū)二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的長(zhǎng)軸長(zhǎng)是4,離心率為
          1
          2

          (Ⅰ)求橢圓方程;
          (Ⅱ)設(shè)過(guò)點(diǎn)P(0,-2)的直線l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過(guò)橢圓C的右頂點(diǎn)A,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的短軸長(zhǎng)為2,離心率為
          2
          2
          ,設(shè)過(guò)右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過(guò)A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
          AP+BQ
          PQ
          ,若直線l的斜率k≥
          3
          ,則λ的取值范圍為
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案